
www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA 93943-8008

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
ANALYSIS AND DESIGN OF A

PARAMETERIZED PROTOCOL CONVERTOR

by

Berle Garris Jr.

December 1985

Thesis Advisor: M. L. Cotton

Approved for public release; distribution is unlimited

T226339

www.manaraa.com

www.manaraa.com

JCURIfY gAS$IFI(?ATl6N OF THIS PAGT

REPORT DOCUMENTATION PAGE
' REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

,. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT Approved fOr
public release; distribution is
unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

f. NAME OF PERFORMING ORGANIZATION
•aval Postgraduate
ichool

6b OFFICE SYMBOL
(If applicable)

62

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

: ADDRESS (City, State, and ZIP Code)

bnterey, California 93943-5100
7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5100

NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Include Security Classification)

NALYSIS AND DESIGN OF A PARAMETERIZED PROTOCOL CONVERTOR

PERSONAL AUTHOR(S)

Isrle Garris, Jr.

I TYPE OF REPORT

aster's Thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

1985 December
15 PAGE COUNT

109
SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Protocol Convertor; Data Flow; VLSI

ABSTRACT (Continue on reverse if necessary and identify by block number) Designed to circumvent the incom-
atibilities between communicating computer systems, a parameterized protocol convertor
armits the use of communication equipment supporting variations of the same communication
rotocol or completely different framing technique protocols. The analysis of the
Dnversion process includes the engineering trade-offs between speed of conversion and

Lexibility, and the use of an alternative flow architecture. Flexibility is enhanced
irough user selection of input and output protocol types, and the designation of

jnctional specifics, such as code type, header length, and error detection methods, with
iriable parameters. The speed of conversion is increased through the parallel processing
E the framing, transparency, and error control sub-functions and the use of a single byte
:orage technique. The single byte storage technique imposes some limitations in the use
f transparent data.

DISTRIBUTION /AVAILABILITY OF ABSTRACT

QUNCLASSIFIED/UNUMITED SAME AS RPT. D DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
). NAME OF RESPONSIBLE INDIVIDUAL

rof M. Cotton
22b TELEPHONE (Include Area Code)

408-646-2377
22c. OFFICE SYMBOL

62Cc

i FORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

www.manaraa.com

Approved for public release; distribution is unlimited

Analysis and Design of a

Parameterized Protocol Convertor

by

Berle Garris Jr.
Captain, United States Marine Corps

B.S., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1985

www.manaraa.com

ABSTRACT

Designed to circumvent the incompatibilities between

communicating computer systems, a parameterized protocol

convertor permits the use of communication equipment

supporting variations of the same communication protocol or

completely different framing technique protocols. The

analysis of the conversion process includes the engineering

trade-offs between speed of conversion and flexibility, and

the use of an alternative flow architecture. Flexibility

is enhanced through user selection of input and output

protocol types, and the designation of functional

specifics, such as code type, header length, and error

detection methods, with variable parameters. The speed of

conversion is increased through the parallel processing of

the framing, transparency, and error control sub-functions

and the use of a single byte storage technique. The single

byte storage technique imposes some limitations in the use

of transparent data.

www.manaraa.com

TABLE OF CONTENTS

I . INTRODUCTION 5

I

I

. THE NEED FOR PROTOCOL CONVERTORS 9

A. DEFINITION OF A PROTOCOL 9

B. DEFINITION OF A PROTOCOL CONVERTOR 13

C

.

LACK OF STANDARDS 15

D. INTEROPERABILITY 16

E

.

SUMMARY 19

III. CONFLICTING REQUIREMENTS OF SPEED AND FLEXIBILITY. .. 2

1

A. ENGINEERING TRADE-OFFS BETWEEN

SPEED AND FLEXIBILITY 21

B. REQUIREMENTS FOR SPEED 24

C. REQUIREMENTS FOR FLEXIBILITY 30

D. WHY NOT CONTROL FLOW ARCHITECTURE 32

E

.

DATA FLOW ARCHI TECTURE 34

F. SUMMARY 37

IV. PROPOSED ARCHITECTURE FOR PROTOCOL CONVERSION 38

A

.

AN EXAMPLE 38

B. SYSTEM BLOCK DIAGRAM DESCRIPTION 43

C

.

PROTOCOL CONVERSION WI TH HARDWARE 45

D. PROTOCOL CONVERSION UNITS 55

E. COMMON CIRCUITS 68

F. SUMMARY 86

V. IMPLEMENTATION 88

A. CHIP DESIGN 88

B. SYSTEM DESIGN 97

C. SUMMARY 99

VI . CONCLUSIONS 101

LIST OF REFERENCES 106

INITIAL DISTRIBUTION LIST 108

www.manaraa.com

I. INTRODUCTION

Currently there is a proliferation of computers needing

to exchange information which are hampered by incompatible

communication protocols. These incompatibilities are

manifest in different word lengths, different operating

speeds, various error detection schemes and assorted other

capabilities. Any one of these incompatibilities between

two systems effectively renders communication between them

impossible .

Capability, not communications compatibility is usually

the driving factor in system procurement decisions, and the

subsequent communications incompatibility brings on

inefficiency. Until communication parameters can be

standardized nationally, and then internationally, the need

exists for an intermediate solution: a parameterized

protocol converter.

This thesis describes an analysis and exploratory

design of a parameterized protocol convertor; a protocol

convertor with its functional specifics designated with

variable parameters. Designed to circumvent the

incompatibilities between communicating computer systems,

the parameterized protocol convertor permits the use of

communication equipment supporting variations of the same

communication protocol or completely different framing

technique protocols. The parameterized protocol convertor

is adaptable to any combination of input and output

protocols of the three major framing techniques. The three

major framing techniques are character oriented protocols,

byte count protocols, and bit oriented protocols.

There are two initial design requirements to be met

with a parameterized protocol convertor:

www.manaraa.com

- Sufficient flexibility to absorb variations between

implementations of similar protocols.

- The fastest performance possible.

Flexibility is required for several reasons. Various

system manufacturers have interpreted the protocol

standards differently. In their designs of communication

equipment, the system manufacturers have included small but

significant variations between the protocol their equipment

supports and the protocol other manufacturer's equipment

supports. These differences between ^standard' protocols

makes communication between systems from different

manufacturers difficult.

If the design is to remain viable for any length of

time, it must be flexible in its implementation. Changes

in the protocols supported and the addition of new

protocols are anticipated by parameterizing aspects of the

protocols likely to be altered.

Although there are several protocol convertors already

available, all suffer from limitations as to their speed of

operation or the extent of their flexibility. To increase

the speed of conversion, there are several aspects of

current protocol convertors which need to be modified. One

of these is the storage of data as it is converted.

Current protocol convertors must store a large portion of a

frame of information to convert the information content

between two different protocols. If the data stream can be

manipulated without storing the entire frame in the

protocol convertor memory, the speed of conversion can be

increased.

Another property of current protocol convertors in need

of modification is the use of sequential, microprocessor

controlled logic to implement the conversion process. Many

facets of protocol conversion can be executed

simultaneously with parallel processing. There are

alternative architectures more adapted to parallel

www.manaraa.com

processing than the traditional control flow architecture

employed in current protocol convertors.

Sequential, microprocessor controlled logic usually

requires software control of its operation. Software

control is desirable for flexibility and ease of alteration

of the sequence of operation. But software control also

decreases the conversion speed, in that instructions must

be fetched and interpreted. The requirement to fetch and

interpret instructions can be removed by implementing the

protocol conversion algorithms in hardware instead of

software

.

A synopsis of each chapter follows.

Chapter Two provides some basic definitions of

protocols, their sub-functions and protocol convertors.

The definitions are followed by a discussion of some of the

requirements for protocol conversion. One reason

emphasized is a lack of clearly delineated standards in the

digital communication field. Another reason is the

extensive interoperability requirements of computer

communications in both the military and the civilian

business world.

Chapter Three is an analysis of the two major

conflicting requirements of a protocol convertor; speed and

flexibility. A substantial speed of operation is desired

to keep the protocol convertor from becoming the bottleneck

in the communication system. At the same time, sufficient

flexibility is required to absorb variations in the

different implementations of similar protocols.

Chapter Four is a description of the parameterized

protocol convertor architecture. Starting with an example

of how the parameterized protocol convertor would operate,

the chapter includes descriptions of the system block

diagram, the separate protocol conversion units and several

customized circuits. The implementation of the conversion

process in hardware using an internal virtual protocol is

www.manaraa.com

described, along with a detailed description of the three

sub-functions required for protocol conversion; framing,

transparency and error control.

Chapter Five is a description of the implementation of

the architecture described in Chapter Four. The

implementation description encompasses both the chip design

for the parameterized protocol convertor and a system

design for the entire communications link including the

protocol convertor. Several alternatives for the system

design are presented, covering various levels of traffic

intensity on the communications channel.

Chapter Six is a summary of the presentation and some

conclusions drawn from the analysis and exploratory

des ign.

This thesis presents some possibilities for improving

the current state of protocol conversion. Several

innovative approaches to the conversion problem are

explored and several new techniques developed. The concept

of parallel sub-function processing and the concept of the

protocol convertor as a filter with minimal storage is

supported throughout, even though this leads to some

unresolved problems.

www.manaraa.com

II. THE NEED FOR PROTOCOL CONVERTORS

A. DEFINITION OF A PROTOCOL

For two systems to communicate successfully, they must

*speak the same language;' that is they must both

understand what is being passed between them as to content,

form and timing. The information passed between the two

systems must comply with some mutual set of rules and

conventions, called a protocol [Ref. l:p. 11.

The analysis of complex communication protocols and

systems can be simplified through the use of partitioning.

One set of partitions in communication network theory is

the International Standards Organization (ISO) Reference

Model of Open Systems Interconnection (OSI), commonly

referred to as the seven layer model.

As its common name implies, the ISO OSI model consists

of seven layers:

1. The application layer.

2. The presentation layer.

3. The session layer.

4. The transport layer.

5. The network layer.

6. The data link layer.

7. The physical layer.

The bottom two layers, the physical layer and the data

link layer are usually implemented in hardware and are the

two layers of primary interest in this study of the

protocol conversion process.

The physical layer is involved in transmitting raw bits

over a communication channel. Here the major

considerations are mechanical, electrical, and procedural

interfacing to the subnet. The data link layer is involved

in segmenting the input data into frames. The data link

www.manaraa.com

layer creates and recognizes frame boundaries by attaching

special bit patterns to the beginning and ending of a

frame. [Ref. 2:p. 17]

The top five layers are typically implemented in

software and perform various tasks such as:

- Controlling the operation of the subnet.

- Determining the route for the frame to follow.

- Providing an interface for the user into the network.

- Executing library functions.

Each communication system in the ISO 0S1 model consists

of an identical set of seven layers. The use of the model

leads to analyzing seven different protocols between the

seven layers of the model. Within each communication

system, messages to be transmitted are passed down through

the top layers of the model to the bottom layers of the

model through interfaces. These interfaces provide a

conduit for data between the layers of the model and serve

to insulate the different layers from changes in adjacent

layers.

Only the bottom layer of the model, the physical layer,

uses a physical protocol. The physical layer is the only

layer that actually passes tangible data bits between the

two communication systems. The other six layers

communicate through implicit protocols. There is no

physical link between peer layers of the two communication

systems in the top six layers. The passage of data from an

upper layer to the bottom layer of one system, across the

physical link and back up to the equivalent layer of the

other system provides a virtual communication link between

the two peer layers.

In addition to the ISO OSI partitioning of the entire

communication system, the concept of a protocol can be

divided into seven specific sub-functions. According to

McNamara [Ref. 31, protocols solve operating problems in

the following areas:

10

www.manaraa.com

- Framing.

- Error control

.

- Sequence control .

- Transparency.

- Line control

.

- Time-out control.

- Ini t ial izat ion.

The concept of framing or segmenting can be viewed on

two separate, yet interconnected levels. Framing can be

considered the determination of which groups of bits make

up characters, or which groups of characters constitute

frames. The current popular protocols are divided into

three categories according to their message framing and

segmenting techniques. Character oriented protocols use

special characters to indicate the beginning and ending of

a frame. Byte count protocols send a tally of how many of

the characters or bytes following the frame header

constitute the information filed of the frame. Bit

oriented protocols, like character oriented protocols, use

a special flag character or bit sequence to delineate

frames

.

Byte count protocols are sensitive to undetected errors

in the tally field of the frame, and restrict the data

format to a specific character size. Character oriented

protocols hamper the evolution of the protocol by building

in a specific character code. The most popular modern

framing technique is the one used in bit oriented

protocols. Bit oriented protocols prevent user data from

interfering with framing, but do not restrict the data to

one particular character size. tRef. 4:p. 10]

Error control encompasses the entire area of error

detection and correction. Various forms of redundancy

checks are used to determine if a frame was received

without errors. These include, but are not limited to:

Cyclic Redundancy Checks (CRC), Longitudinal Redundancy

11

www.manaraa.com

Checks (LRC) and Vertical Redundancy Checks <VRC). Popular

protocols request the re-transmission of error corrupted

frames instead of the time consuming process of error

correction.

Sequence control is concerned with the numbering of

frames to avoid duplication and loss of frames. The

re-transmission of error corrupted frames requires sequence

control to reduce the possibility of interpreting

re-transmitted frames as originals.

Transparency involves transmitting data that could be

interpreted as special control characters. Some frames may

contain data that appear to the receiving station to be one

of the special control characters (for character oriented

protocols) or special bit sequences (for bit oriented

protocols) used in framing. Bit stuffing and character

stuffing are used to alter the data as it leaves the

transmitting station and prevent any misinterpretation by

the receiving station.

Line or flow control can be viewed as traffic control on

the transmission medium. This protocol sub-function

determines which station will transmit and which station

will receive. The station receiving the frame must reply

to the station sending the frame with acknowledgments and

possible requests for the re-transmission of error

corrupted frames.

Time-out control is that part of a protocol that handles

the case of what to do if the message traffic suddenly

ceases. It also collaborates with sequence control in

keeping track of lost frames by signaling the lack of an

expected response after an allotted time period.

Start-up or initialization control handles the case of

instigating the flow of data in on idle communication

channel. It encompasses the determination of how to inform

the receiving station that a frame is on its way before the

actual arrival of the frame. This allows the receiving

12

www.manaraa.com

station to prepare itself to receive the frame.

These are just a sampling of the duties of a protocol.

There are other problems that must be solved as well, such

as deciding what a transmitter should send when it has no

data to send, and how to recover from an abnormal

condition. The various protocols solve these problems with

a multitude of different methods. Before any effective

transfer of information between two different protocols can

take place, the different protocol solutions to each of

these listed problems must be correlated. This is the

challenging job of the protocol convertor.

B. DEFINITION OF A PROTOCOL CONVERTOR

When two communication systems do not use the same

protocol, a special type of filter or buffer is needed to

support communications between them. The filter accepts

data in one protocol and plies it as necessary to transform

it into another protocol for output. This data

manipulation effectively establishes a data path between

the two systems. The established data path permits

communication between the two systems despite differences

in speed and message formats. The filter operation is

called protocol conversion, and consequently the filter has

been dubbed a protocol convertor.

The analysis of the protocol conversion process entails

many of the functions performed by the protocols

themselves. But a distinction must be drawn between the

protocol conversion process and the operation of a

protocol. Any communication system needing the services of

a protocol convertor already has the mechanisms and

circuits in place to accomplish the tasks delineated by the

sub-functions. These mechanisms and circuits are specific

to one particular protocol, but they presumably function

properly within the specifications of that particular

protocol. The job of the protocol convertor is not that of

13

www.manaraa.com

a half or full-duplex serial receiver or transmitter, but

simply a filter to assist in the transfer of data between

two system using different protocols.

Protocol conversion can be accomplished with many

different technologies and techniques. Karten

[Ref. 5:p. 7] lists several different options for

connecting incompatible equipment; each with its own set of

advantages and disadvantages.

- A * black box' hardware approach.

- A software program.

- Network-based protocol conversion services.

- Varied combinations of hardware and software.

The oldest, most established method of protocol

conversion is the *black box' approach; a hardware device

connecting two communicating stations. Each station sends

its signals to the other station through the *black box'.

Within the box, the received signals are converted into a

protocol understood by the receiving stations and then

transmitted. This technique is relatively straight

forward, but the requirement for one box per set of

stations makes the 'black box' approach expensive.

Another method of implementing a protocol convertor is a

software program which accomplishes the same effect as the

'black box.' The signals from the stations are passed

through a processor running a protocol conversion program.

The program manipulates the signals into protocols

understood by the receiving station. This technique is

somewhat more flexible than the 'black box,' because of the

accessibility of the conversion program stored in

software. But software programs also require extensive

memory and tend to slow down the conversion process.

Depending on the source of the software, the cost is

comparable to the 'black box' method.

A third option for implementing a protocol convertor is

the use of network-based protocol conversion services, such

14

www.manaraa.com

as GTE's Telenet and McDonnel-Douglas' s Tymnet. These

services receive signals from various stations, and convert

them to a network standard protocol. The signals are then

routed to the network processor nearest the receiving

station. At the nearest network processor, the signals are

converted from the network standard protocol into a

protocol understood by the receiving station and

transmitted. Network-based services are only appropriate

for systems using many widely dispersed facilities which

have access to phone lines.

These are just a few examples of the different

technologies and techniques available to accomplish

protocol conversion. There are a multitude of combinations

of these methods which are also used, such as the

combination of software and hardware techniques into a

* firmware' approach.

C. LACK OF STANDARDS

There are as many different standards for protocols as

there are methods to implement them. Fortunately, most of

these standards are similar in format, timing and methods

of conveying information. These similarities are due in

part to the basic structure required of a digital

communication protocol and in some cases, one common source

for many different standards. Despite minor differences,

most modern protocols are designed around basically the

same frame format. The variations between similar

protocols have originated where protocol specifications

have been interpreted differently.

Many of the popular protocols are adaptations by the

standardization organizations of the same basic protocol.

For example, SDLC (Synchronous Data Link Control) which was

first developed by IBM (International Business Machines)

was modified by the American National Standards Institute

(ANSI) to ADCCP (Advanced Data Communication Control

15

www.manaraa.com

Procedure). The International Standards Organization (ISO)

also modified SDLC to become HDLC (High-level Data Link

Control). The Comit6 Consultatif Internationale de

Telegraphique et Tel6phonique (CCITT) then modified HDLC to

become its LAP (Link Access Procedure). Subsequently, the

CCITT modified LAP to become LAPB, and integrated it into

the X.25 network interface standard. [Ref. 2:p. 168]

Tanenbaura sums up the state of standardization within

the digital communication community in his text on computer

networks

:

"The nice thing about standards is that you have so many
to choose from: furthermore, if you do not like any of
them, you can iust wait for next year's model."
[Reft 2 :p. 1681

With this multitude of different standards and

consequently different protocols, the best immediate

solution is a parameterized protocol convertor. A

parameterized protocol convertor is flexible enough to make

allowances for the small but significant differences

between the popular protocols, yet fast enough to avoid

becoming a bottleneck in the system. Until protocol

standardization is established nationally and then

internationally, the need for a fast, flexible protocol

convertor will exist.

D. INTEROPERABILITY

Variations in protocols and other incompatibilities

between communication systems are commonly referred to as

interoperability problems. The effects of these

interoperability problems can be observed in three separate

areas

:

- The military services.

- The home computer market.

- The business world.

16

www.manaraa.com

Interoperability is defined in military terms as:

"The ability of systems, units, or forces to provide
services to and accept services from other systems, units
or forces and to use the services so exchanged to enable
them to operate effectively together ." (Ref . 6]

This 'ability to provide and accept services' is

tantamount to compatibility. In effect it means

configuring and equipping forces in such a way that they

are able to share resources. These resources range from

tangible goods such as ammunition, spare parts and POL

(Petroleum, Oil and Lubricant) products to less substantial

items such as intelligence information, messages and fire

support coordination measures. With the introduction of

digital communication systems and the extensive use of

computers to handle information in the military services,

the challenge of interoperability has spread to the

computer communication field.

Protocol incompatibility is a major source of problems

between the military services. With the number of

technologically advanced communication systems being

developed and acquired by the different services, the

maintenance of a standard communication protocol between

them is nearly impossible. Some systems have been deemed

adequate for missions they were not originally designed

for. The subsequent revelation of incompatibilities with

other systems involved with the same mission is usually too

late for engineering development changes.

Most of the interoperability problems caused by the use

of various protocols can be solved by the implementation of

a parameterized protocol convertor. Systems that were not

designed to share information could still communicate

despite the use of different protocols. Weapon systems

capability would not have to be sacrificed for

compatibility with other systems or other Services.

Another source of interoperability problems within the

military services is the Department of Defense systems

17

www.manaraa.com

acquisition policy. The military services are directed by

Congress to purchase their systems from the civilian

industrial base; in direct contrast to the government owned

arsenals of previous years. The various contractors and

subcontractors employed to build these systems are at

different levels of technological maturity, and

consequently design systems using different communication

protocols

.

The need for a flexible protocol convertor is more wide

spread than just the military environment. As the home

computer market has expanded, the number of uses of home

computers is growing also. Home computer owners can now

communicate with banks for their account status, access

data bases for information on a multitude of subjects, and

use other "on-line" services, such as electronic mail. No

one standard protocol has been established for the home

computer communication market. There are several that

enjoy varied levels of popularity, such as XMODEM ,

KERMIT 2
, and MNP 3 but they are not compatible with each

other [Ref. 71.

It is too late to set a single communication protocol

standard through out the home computer market. A
4significantly large number of home computers and MODEMS

have already been purchased supporting various

communication protocols; consolidating them would be

impossible. The next best solution is a protocol convertor

that would make the individual choice of communication

protocol insignificant.

^A widely used error—checking protocol for
microcomputers which has been placed in the public domain

A protocol developed by Columbia University for
communications among mlcrocomuputer, minicomputers and
mainframes.

^Microcom Networking Protocol, a file transfer
protocol developed by MIcrocom Inc.

^lODulator-DEModulator : a device which modulates and
demodulates digital signals onto and off of phone lines.

18

www.manaraa.com

Another demand for a flexible protocol convertor is in

the business communication network arena. Some

corporations are finding it more economical to purchase

network system components from different manufacturers

rather than tie themselves to one product line, or one

vendor for their computing needs. The main reasons for

using products from multiple suppliers are reduced cost,

flexible hardware and software upgrades, and access to

advanced technology [Ref. 8:p. 148]. Other corporations in

a hasty effort to obtain computing capability, have amassed

a varied assortment of computers all supporting different

communication capabilities and protocols. Whatever their

source, these system differences come to bare when an

attempt is made to tie the various systems into one

network. The lack of a common protocol among the numerous

system manufacturers Is a major obstacle to be overcome in

the networking arena.

E. SUMMARY

The mutual set of rules and conventions which

communication systems share in order to *speak the same

language' is called a protocol. These protocols solve

operating problems in the areas of: framing, error

control, sequence control, transparency, line control,

time-out control, and start-up control. There is a

multitude of different protocols, each with slight, but

significant variations. When two systems do not share the

same protocol, a special filter called a protocol convertor

is required to enable them to communicate. The protocol

convertor establishes a data path between communication

systems despite differences in speed and message formats,

and errors introduced by the communication medium. There

are numerous techniques and technologies for implementing

protocol convertors, each with its own advantages and

d isadvantages

.

19

www.manaraa.com

A parameterized protocol convertor is flexible enough to

make allowances for the small but significant differences

between the popular protocols, yet fast enough to avoid

becoming a bottleneck in the system. There are extensive

uses for a parameterized protocol convertor. Computer

communications users from all walks of life would benefit

from the removal of the restrictions imposed by

incompatible protocols. The military would see an end to

many of its interoperability problems. The home computer

user could access an sizable number of different on-line

services. The business computer user would be freed from

the limited selection of a single equipment supplier.

Until protocol standardization is established nationally

and then internationally, the need for a fast, flexible

protocol convertor will exist.

20

www.manaraa.com

III. CONFLICTING REQUIREMENTS OF SPEED AND FLEXIBILITY

Protocol conversion for modern communication systems

generally necessitates a compromise of speed and

flexibility requirements. While protocol conversion must

be accomplished at sufficient speeds to avoid becoming a

bottleneck in the system, the conversion process must also

be flexible enough to accommodate variations between

implementations of similar protocols. Unfortunately, the

concurrent implementation of these two conflicting

performance specifications is not directly obvious. The

engineering trade-offs between speed and flexibility call

for a careful analysis of the desired speed capabilities

and the required flexibility specifications.

Use of the traditional control flow architecture can

prove to be a detriment to the effective implementation of

a fast but flexible protocol convertor. Microprocessor

controlled logic and the incurred dynamic flexibility

reduce the speed of the conversion process. Alternate

methods, similar in a limited sense to a data flow

architecture, offer promising possibilities of an increased

speed of operation while maintaining an adequate degree of

flex ibi 1 i ty

.

A. ENGINEERING TRADE-OFFS BETWEEN SPEED AND FLEXIBILITY

One of the most interesting aspects of the engineering

analysis of a problem is the comparative weighting of

different features or capabilities. Various applications

require an emphasis on different attributes of a design,

many of which are in contention with each other. In a

protocol convertor, the major conflicting attributes are a

high speed of operation and an extensive degree of

flexibility. A high speed of operation can be defined as

21

www.manaraa.com

sufficient speed to avoid becoming a bottleneck in the

system. Flexibility can be defined as adaptability to

changes or variations in the protocols. It can be divided

into two broad categories, dynamic flexibility and static

flexibility.

For the purposes of this paper, dynamic flexibility is

defined as the capability of a device to alter the variable

parameters of its function, while the operation is in

progress. This extensive flexibility is Inherently

dependent on a control flow architecture, and the

implementation of algorithms in software vice hardware. A

control flow architecture supports the comparison

decisions, branching and jumping capabilities of the

controlling instructions or program. These capabilities

permit a device to control its own instruction sequence and

to alter the flow of an operation already in progress, to a

1 im i ted degree

.

In contrast, static flexibility is more limited and is

defined as the capability of a device to alter the variable

parameters of its function, but not while the operation is

in progress. Static flexibility does not require the

generality of a control flow architecture, and an

architecture more compatible with the specific requirements

of the application can be exploited. A device designed

with static flexibility implements its algorithms In

hardware vice software, and is flexible only in that

parameters of the operation can be set before use. If

changes are necessary, the process must be halted, the

changes made, and the process restarted.

The implementation of a device with dynamic flexibility

sacrifices some of the otherwise possible speed

capabilities of the device. The use of software to

implement algorithms reduces the overall speed of operation

of the device, because of the requirements to interpret the

instructions stored in software and fetch the operands.

22

www.manaraa.com

Implementation of the same device with the more limited

static flexibility will typically indicate a marked

increase in speed of operation. To use static flexibility,

the algorithms of the application must be somewhat limited

in scope and implemented entirely in hardware. Which

degree of flexibility and corresponding speed of operations

is used is dependent on the requirements of the application

of the device. For example, protocol conversion requires

only limited flexibility, but it does require sufficient

speed to avoid being the bottleneck in the communication

1 ink.

The implementation of the most time consuming aspects

of a process in hardware is termed functional

specialization. While functional specialization may

provide an increase in speed of operation, it also requires

a trade-off in the form of a restricted application of the

system. A system implemented with functional

specialization is limited in its flexibility of application

to one specific area of operations [Ref. 9:p. 2011. The

concept of a parameterized protocol convertor is that of a

dedicated machine in that it is designed to perform

protocol conversion only. Sufficient flexibility for

general application is forfeited for an increased speed of

operat ion.

Bracker [Ref. 10], in his article on the current

protocol vendor offerings, lists forty-three different

devices which convert from protocol A to protocol B.

Twenty-five of these devices are hardware and or software

systems designed to convert between two specific

protocols. They do not provide for any combinations of

protocols other than those specified by the manufacturer,

and only limited variations of the two protocols supported.

The next major group of protocol convertors listed are

front-end processors; devices which are sold as protocols

convertors but also have some user programmable

capab i 1 i ty

.

23

www.manaraa.com

Even with the flexibility provided by their programming

capability, they are still listed as only being able to

convert between two different protocols. The programming

capability of these devices does permit changes in the

system to account for variations of the two protocols

supported. The rest of the protocol convertors listed

provide specific services such as conversion from full to

half-duplex and emulation of specific data terminals. Of

the forty-three listed as capable of converting protocol A

to protocol B, only three are strictly hardware systems.

The currently available protocol convertors offer

dynamic flexibility only. They use a software

implementation of the conversion algorithms to achieve the

desired levels of flexibility with a consequential

reduction in the speed of conversion. Protocol conversion

is one process where static flexibility should be

sufficient. The parameters of a protocol are not changed

while the convertor is in operation, only when the system

protocol is altered in some way. Limiting the

implementation of a protocol convertor to the static

flexibility of hardware implemented algorithms should

increasing the speed of the conversion operation.

B. REQUIREMENTS FOR SPEED

The requirement for fast protocol conversion is driven

by the desire for the conversion process to be invisible to

the user. Communicating with a separate system using

another protocol and a protocol convertor should not appear

any different to a user than communicating with a separate

system using the same protocol. A hardware implementation

of the protocol convertor is usually required to maintain a

sufficient speed of conversion.

An acceptable speed of conversion is tied to many

communication link hardware specifications. These

specifications include the communication capabilities of

24

www.manaraa.com

the system with other systems and the communication channel

bandwidth limitations. In order for the protocol convertor

not to be the bottleneck in the communication system it

must operate at least as fast as the slowest piece of

hardware involved with the communication link. This

minimum requirement is just that, a minimum requirement and

should not be taken as a design goal. Both the

communication capabilities of modern systems and the

bandwidth of communication channel technologies are being

improved at a steady rate.

Siewiorek et al . [Ref. 11] uses Kiviat graphs to

summarize the major performance parameters of several

popular systems. One dimension of the Kiviat graphs is

dedicated to the systems communication capabilities with

other computers. The source of the system communication

speed limitations are typically due to limited system bus

capabilities or slow CPU clock speeds relative to

communication speeds. Table 3.1 lists several systems and

their capabilities for communication with other systems.

TABLE 3.1 COMPARATIVE SYSTEMS COMMUNICATION

CAPABILITIES

SYSTEM

VAX 11/780

IBM 370 Model 155

BSP (Front End B7800)

CYPER 170

CYPER 205

CRAY 1

Another aspect of the communication link hardware

specifications which effects the desired speed of protocol

conversion is the communication channel bandwidth

limitations. Figure 3.1 and 3.2 illustrate the data rate

BITS;SECOND

512 X 10 3

784 X 10 3

12 X 10 6

16 X 10
6

50 X 10
6

50 X 10
6

25

www.manaraa.com

o
o
o
o

o

a

TT i i
i /

X
i

1

1

1
i

W~ k

IT

y^

H

^

'ULU i''

, /

m/i

1

!
•

1 ; / y •
.

i

•

i

,"

;

_A
/

/

o
o
o
.o
o

. o

ll

km aoMvisia
JOT

Figure 3.1 Optical Fiber Bandwidth

26

www.manaraa.com

I I I

s
o
3o
3
a

<

C2

I !
I

I

1
! I

CM:
CM:

CO:

KJ:

U:

ca
en

D<
03

a:
U:
2
<:

PT
JO 3DMVISIQ

o
c
o

t-OT

Figure 3.2 Wire Bandwidth

27

www.manaraa.com

versus distance relationships for several variations of two

of the common digital communication channel technologies;

fiber optics and copper wire.

The latest technological breakthrough in communication

channel technology is the use of fiber optics. Fiber

optics offer a far greater potential transmission bandwidth

than metallic cable systems or radio systems. A coaxial

cable system is limited to approximately 500 megahertz of

transmission bandwidth, and a millimeter wave wideband

radio system to approximately 700 megahertz. Currently the

bandwidth available to fiber optic systems is the range of

several gigahertz over a few kilometers and hundreds of

megahertz over tens of kilometers without intervening

repeaters. In the near future the usable fiber optics

system bandwidth will be extended further towards the
13 16optical carrier frequency (10 Hz - 10 Hz) to

provide an information carrying capacity far in excess of

that obtained using copper cables or a wideband radio

system. (Ref. 12:p. 7]

One significant limitation to the available

communication bandwidth of a fiber optics system is the

electronics which are required to support communications

using the channel. Although the fiber optic channel itself

can handle transmissions of several hundred megahertz, the

circuitry used to modulate the signals onto the channel is

limited to the speed of the current circuit technologies.

The common, commercially available TTL circuitry is

limited to the area of 20 megahertz and the more expensive

ECL operates typically in the area of 70 megahertz.

Until circuit design technologies can achieve the same

bandwidth as fiber optic systems, the sizeable bandwidth

available can be utilized only with multiplexing systems,

which combine many different signals onto one channel.

^•Transistor-Transistor Logic

Emitter—Coupled Logic

28

www.manaraa.com

The speed considerations for protocol conversion in this

case are for one single data stream, without multiplexing.

Current communication channel bandwidth limitations are

no reason to reduce efforts to provide the fastest protocol

conversion services possible. As technologies mature,

faster communication channels will be developed, until the

protocol convertor will eventually become the bottleneck in

the communication link.

If sufficient communication channel bandwidth and

processor communication capabilities are available,

processing of the protocol becomes the major detriment to

fast protocol conversion. A protocol convertor that can

not keep pace with the data being input into it requires

some form of data storage. If the size of the storage

buffer is not sufficient to absorb the difference between

data reception speed and data conversion speed, buffer

overflows occur and increase the processing delay even

more. Any buffer overflow requires the re-tranmiss ion of

the data, again slowing the system's effective throughput.

To overcome these obstacles, efforts are made to streamline

the data manipulation by simplifying the conversion process

and using the parallel constructs of a data flow

architecture. [Ref. 13:p. 2]

Another aspect of the required speed capabilities is

the conversion between the serial data used for

communication between systems and the parallel data used

internal to the system. Since most digital communication

traffic traveling any major distance is passed over a

single channel per transmitter medium, the data must be

transmitted serially. This is in contrast to the short

distance communication between a system and its peripherals

usually accomplished on parallel lines. The serial

transmission of data requires very high bit rates to keep

up with the fast parallel movement of data within modern

systems, and to maintain a reasonable throughput.

29

www.manaraa.com

Joshi and Iyer [Ref. 13] use the illustration of a

funnel as a tool to help describe the conversion between

parallel and serial data and the resulting increase in

speed of the data. As the data is received from a system

in parallel form into the wide mouth of the funnel, it is

converted into serial form and passed to the transmitting

medium at the constricted funnel end. An analogy is made

between the data and a fluid in the funnel, where the data

moves much more rapidly at the constricted end of the

funnel than at the wide mouth of the funnel.

Any processing performed on a data stream can be viewed

as a perturbation which causes turbulence in the funnel,

because it slows down the movement of data. Where in the

funnel the data is processed determines the extent of the

effect of the turbulence. If the processing occurs in the

wide (parallel) section of the funnel, the effect of the

turbulence is minimal. This is in contrast to processing

in the narrow (serial) section where any degradation in

speed is of major concern. Processing in the high speed

narrow section of the funnel requires high speed and

consequently expensive hardware. In order for less

expensive techniques to be used effectively, the

configuration of the processing and the conversion

architecture must be carefully defined.

C. REQUIREMENTS FOR FLEXIBILITY

The requirement for a flexible protocol convertor is

driven by several factors related to current protocols and

their standardization. These include:

- The many variations of currently popular protocols.

- Inevitable changes in current protocols.

- The development of new protocols as the standards are

approved.

- A significant reduction in hardware redesign

requ irements .

30

www.manaraa.com

The desired degree of flexibility in a parameterized

protocol convertor requires the use of a changeable

parameter store, such as software or firmware. This is in

contrast to a protocol convertor implemented totally in

hardware which can not be readily adjusted to any

alterations in the conversion process.

A limited degree of flexibility is required to account

for the subtle differences in various implementations of

the currently popular protocols. These differences are the

result of varied interpretations of the protocol standards

and the implementation of these differences by various

system manufacturers. An example is the development of LAP

from SDLC described previously.

As communication techniques and technologies advance,

there will be inevitable changes in the protocols currently

installed on major communication systems. These changes

will require a modification of the parameters of a protocol

convertor. If the changes are anticipated, and sufficient

flexibility built in, the protocol convertor will not

become obsolete any faster than the technology of the

system it supports.

Once the adaptability of the current protocols has been

exhausted, new ones will have to be developed. These new

protocols will include the latest state-of-the-art

techniques of communication protocol technologies. The

chances of anticipating sufficient flexibility requirements

to absorb the changes in this situation is doubtful, but

nevertheless a worthy goal.

As new protocols are accepted as standards, a flexible

parameterized protocol convertor will be adaptable to the

changes without major hardware reconfigurations, or

modifications. Under the concept of static flexibility,

the parameters most likely to be altered or adapted in a

new protocol are maintained in a changeable control store.

?See p. 15 - protocol standards

31

www.manaraa.com

Only the apparently consistent operation algorithms are

implemented in hardware. Unless the development of a new

protocol significantly alters the basic operation of

protocol conversion, the only changes should be in the

easily accessible parameters.

D. WHY NOT CONTROL FLOW ARCHITECTURE

A major consideration in the design of a system is the

relation between the algorithms to be implemented and the

architecture to be used. When there is a correlation

between the algorithm and the architecture, a synergistic

effect can be expected. Both the algorithm and the

architecture seem to perform better by their relationship

with the other. The algorithms involved in protocol

conversion are not suited to the control flow architecture

they are currently implemented with.

The traditional control flow architecture or Von

Neumann architecture is know for its generality and

flexibility in that it supports a large variety of

programming languages and styles with reasonable

effectiveness. Its flexibility stems from the control flow

structure which allows the programmer, the compiler, and or

the interpreter direct control over the low level machine

operations when necessary [Ref. 14:p. 5941.

Control flow architectures are also know for their

implicit sequential nature. There is a single thread of

control passed from instruction to instruction, resulting

in explicit transfers of control from one instruction to

the next. The instructions have limited control over their

own sequence of execution. [Ref. 15:p. 734]

Hwang and Briggs [Ref. 15] list several identifying

characteristics of a control flow architecture:

- Data is passed between instructions via references to

shared memory cells.

- The flow of control is implicitly sequential.

32

www.manaraa.com

- Program counters are used to sequence the execution of

instructions in a centralized control environment.

These characteristics provide a high degree of

flexibility, but not without some significant trade-offs.

There is a substantial cost in speed of operations in order

to allow an almost universal applicability of the

architecture

.

The majority of the available protocol convertors use

both hardware and software in a microprocessor controlled

logic system. These logic systems resemble the traditional

control flow architecture with the program or instruction

sequence stored in software. The conversion speed of these

units is directly related to the controlling microprocessor

speed. Both the system clock frequency and the rate at

which the microprocessor can sequence through its

instruction cycle limit the speed at which conversion can

be realized. Although fast enough for most applications,

the sequential nature of their operation, the long

instruction execution times, and the centralized program

control result in a system which is too slow to meet the

critical time constraints of protocol conversion

[Ref. 16: p. 13].

A study of comparative architectures would indicate

that the more aspects of a system are implemented in

hardware, the faster the speed of the system. This

increase in speed is offset by a corresponding reduction in

flexibility. One example is the Intel 8087 Numeric Data

Processor (NDP) used in conjunction with the Intel 8086 or

8088 microprocessor. The 8087 NDP performs only one basic

type of function; arithmetic and transcendental operations

on integers and real numbers. There are only fourty-eight

instructions available in the 8087 instruction set, and

they are all oriented towards numeric operations. The 8087

NDP performs these arithmetic and transcendental operations

33

www.manaraa.com

at a five to ten fold speed increase over the more flexible

processors it supports [Ref. 17:p. 401.

Flexibility realized from the storage of instructions

in software is one example of dynamic flexibility. The

instruction flow of a system under software control can be

altered as the system is operating. For example, most

languages implemented on control flow architecture machines

support the use of comparison decisions, and subsequent

branching. These branches effectively change the flow of

instructions dependent on either the results of internal

calculations or external inputs. This dynamic flexibility,

afforded by the storage of instructions in software, is a

desirable asset in many situations requiring varied

applications of the same design.

Although desirable in some situations, a fixation with

flexibility can prove fatal to speed capabilities. In

general terms, the more flexible a system, the slower the

system is in operation. The possibility of several

applications is typically gained at the expense of the

speed of operation of the variations.

E. DATA FLOW ARCHITECTURE

A more promising approach to implementing a fast yet

flexible protocol convertor is the use of limited aspects

of a data flow or data driven architecture Where a control

flow architecture is oriented towards the sequential

interpretation and execution of instructions, a data flow

architecture exploits parallelism by executing instructions

as the required operands for the instruction become

available, regardless of the order of the instructions.

The number of different operations being concurrently

executed in a data flow architecture is limited only by the

hardware resource availability [Ref. 15:p. 29].

According to Gajski et al
.

, [Ref. 181, a data flow

model of computation is based on two principles:

34

www.manaraa.com

- Asynchrony - operations are executed when and only

when the required operands are available.

- Functionality - all operations are functions without

side effects, that is, any two operations can be

executed in either order or concurrently.

In a data flow architecture, many instructions can be

executed simultaneously and asynchonously . The scheduling

and synchronization of concurrent activities are built in

at the hardware level, enabling each instruction to be

treated as an independent concurrent action

[Ref. 14:p. 487].

Generally, to increase the speed of operation of a

control flow architecture system, there must be an increase

in the speed of the individual components of the system.

Just adding more components is usually of limited value.

In contrast, a data flow architecture system benefits from

an increase in the number of processors, up to a limit

where the communication delay between the processors is

greater than the processing time of a single processor. In

a parameterized protocol convertor, increasing the number

of processors correlates to increasing the number of

simultaneous operations performed.

The parameterized protocol convertor is not a true

implementation of the data flow architecture. The data

flow architecture is usually implemented as a general

purpose, programmable system. The parameterized protocol

convertor is a dedicated machine, designed for one

application only. Both the parameterized protocol

convertor and a data flow architecture:

- Exploit parallelism.

- Instructions (or operations) are executed when the

operands become available.

- Instructions (or operations) are not ordered.

The parameterized protocol convertor uses operations

stored in hardware instead of the instructions of a true

35

www.manaraa.com

data flow architecture. These operations are essentially

algorithms implemented directly with programmable logic

arrays (PLA) and random logic.

The data path implementation of a protocol convertor is

a dedicated machine,' in that it only performs the

function of protocol conversion. The 'general purpose

machine* flexibility of the control flow architecture has

been abandoned for the sake of increased speed of

operations. Not all flexibility has been sacrificed for

this increase in speed, only the dynamic flexibility

afforded by the branching abilities of a control flow

architecture

.

Partitioning a process and devoting a separate

processor to each part of the overall process is called

functional decomposition. Though not as effective as

functional specialization, functional decomposition also

produces an increase in the speed of operations. For

example, the use of parallel data flow within the protocol

convertor assists in obtaining the desired high speed of

convers ion

.

The concept of functional decomposition is applied to

the data stream to be processed. As the data stream is

received it is copied into parallel shift registers The

data is then manipulated concurrently from each shift

register. In particular, the determination of transparent

data, the error control process, and the determination of

the frame limits all take place at the same time.

The determination of how to break the incoming data

stream into sections has a major impact of the overall

speed of the conversion process. Any increase in speed of

operation from an implementation of functional

decomposition is dependent on the even distribution of work

between the operations, to prevent one of them from

becoming a bottleneck in the system.

36

www.manaraa.com

F. SUMMARY

To be effective, a parameterized protocol convertor

necessitates a balance between conflicting speed and

flexibility requirements. Adequate flexibility must be

provided to account for variations in the protocols

supported, and sufficient speed of operations is required

to avoid becoming a bottleneck in the system. The

currently available protocol convertors offer a limited

degree of flexibility, but their implementation with

software systems and control flow architectures reduce the

possible speed of conversion.

The requirement for fast protocol conversion is in

comparison to the communication capabilities of the

system. Systems are typically limited by restricted bus

capabilities, CPU clock speeds and communication channel

bandwidth limitations. The protocol conversion process

should not be a bottleneck in the system architecture.

The requirement for a flexible protocol convertor is

driven by the lack of standardization of protocols. There

are many variations of the popular protocols, and even

these change periodically. Some flexibility must be

allowed if the protocol convertor is to remain unaffected

by the changes in the protocols supported.

The extensive flexibility of control flow architectures

can be a detriment to a specific application with major

speed requirements and limited flexibility requirements.

Alternative architecture concepts, such as the data flow

architecture can be employed in a protocol convertor to

assist in the achievement of sufficient speeds of

operation.

37

www.manaraa.com

IV. PROPOSED ARCHITECTURE FOR PROTOCOL CONVERSION

A. AN EXAMPLE

A typical example of protocol conversion will help

illustrate the basic concepts of the parameterized protocol

convertor. Two stations of a communication system are

required to exchange data at a high rate on a half-duplex

communication channel in a serial synchronous mode.

Station A uses OOCMP (Digital Data Communications Message

Protocol), a typical byte count protocol, and Station B

uses SDLC (Synchronous Data Link Control), a typical bit

oriented protocol. Neither station has an internal

protocol conversion capability; both of them must rely on

external convertors to exchange information with stations

supporting other protocols.

The data to be exchanged between Station A and Station

B consists of relatively short frames on the average of

forty to fifty bytes each. The Station A DDCMP frame

format is illustrated in Figure 4.1.

SYN SYN CLS CNT FLO RSP SEQ ADD CRC1 INFO CRC2

14 2 3 QW g 16 IS

Figure 4.1 DDCMP Frame Format

Where SYN is the synchronization character, CLS is the

class of the frame, CNT is the byte count, FLG is a quick

synchronization or select flag, RSP is the response to the

last frame, SEQ is the sequence number of this frame, ADD

is the address, CRC1 is the header block check characters,

INFO is the information field and CRC2 is the information

field block check characters CRef. 3:p. 158]. The numbers

38

www.manaraa.com

under the acronyms are the length of the fields in bits.

The information field can be up to 16,363 bytes in length.

The first nine fields of the frame contain information

relative to the system protocol. Only the information

field contains the data required by the user at Station B.

Figure 4.2 illustrates the SDLC frame format.

FLG

8

ADD

8

CTL

8

INFO CRC

16

FLG

8

Figure 4.2 SDLC Frame Format

Where FLG is the synchronization flag, ADD is the frame

address, CTL is a control byte, INFO is the information

field, CRC is the frame block check characters and FLG is

the synchronization flag again [Ref. 3:p. 1641. The

numbers under the acronyms are the length of the fields in

bits. The information field can be any number of bits.

The first three fields of the frame contain information

relative to the system protocol. Similar to the DDCMP

frame format, only the information field contains the data

required by the user at Station A.

Two parameterized protocol convertors are required to

support communication between Station A and Station B. The

parameterized protocol convertor installed with Station A

is set for a byte count input protocol and a bit oriented

output protocol. The parameterized protocol convertor

installed with Station B is set for a bit oriented input

protocol and a byte count output protocol.

To aid the protocol convertor in determination of the

frame boundaries, detection of any transparent data, and in

error control, several aspects of the two protocols must be

specified. These include, the code type used, the bit

sequence used as a synchronization character, the length of

39

www.manaraa.com

the header and which CRC generator is used. The parameter

inputs for both convertors are set as indicated in

Table 4.1 for the byte count protocol parameters and

Table 4.2 for the bit oriented protocol parameters.

TABLE 4.1 BYTE COUNT PROTOCOL PARAMETER SETTINGS

Code Type - ASCII

Synchronization Character - 00010110

Header Length (after synchronization) - 8 bytes

Byte Count Length - 14 bits

First Bit of Byte Count - bit 9

CRC Generator - CRC- 16

TABLE 4.2 BIT ORIENTED PROTOCOL PARAMETER SETTINGS

Code Type - ASCII

Synchronization Flag - 01111110

Header Length (after synchronization) - 2 bytes

CRC Generator - CRC-CCITT

Control codes are another aspect of the two protocols

which must be specified. The two stations exchange

information about their status and the condition of

received frames through the use of control codes. The

control codes must be translated so that each station only

receives control codes it will recognize. The required

control code translations for both protocols are Indicated

in Table 4.3.

The exchange of data proceeds as follows. Station A

sends an initialization or enquiry message to Station B in

the form of a DDCMP Start Message Control Code. The frame

is received into the Station A parameterized protocol

convertor where the DDCMP Start Message Control Code is

40

www.manaraa.com

transposed into the SDLC Set Initialization Mode Control

Code and routed to Station B. Station B receives the Set

Initialization Mode Control Code and initiates the system

specified procedures for frame reception.

When Station B is ready to receive data from Station A,

Station B responds to the initialization message with the

SDLC Nonsequenced Acknowledgment Control Code. The frame

is received into the Station B parameterized protocol

convertor and transposed into the corresponding DDCMP

control code, Start Acknowledge. Station A receives the

Start Acknowledge Control Code and interprets it as an

indication that Station B is initialized and ready to

receive a data frame.

Once both stations have indicated that they are ready

to exchange data, Station A sends its first data frame.

The frame is received into the Station A parameterized

protocol convertor for conversion to the SDLC format. The

frame manipulation includes determination of the length of

the information field of the frame, detection of any data

which should be made transparent to the SDCL control code

detection circuity, and error control. As the frame is

manipulated, it is passed out of the Station A

parameterized protocol convertor to Station B. At no time

is more than one byte of the frame stored in the Station A

protocol convertor.

Once the entire frame is received at Station B, it is

checked for errors. For purposes of illustration, the

block check characters indicate an error in the reception

of tiie frame. The SDLC Reject command code is the sent

back to Station A by Station B indicating a request for

re-transmission of the last frame. The SDLC Reject command

code is transposed to the DDCMP Negative Acknowledge

command code within the Station B protocol convertor and

passed to Station A.

41

www.manaraa.com

TABLE 4.3 CONTROL CODE TRANSLATION TABLE

X INDICATES DON'T CARE.

Byte Count Protocol

Control Codes

Start Message

OOOOOlOl 000001 10

Start Acknowledge

00000101 00000111

Negative Acknowledge

00000101 00000010

Positive Acknowledge

00000101 00000001

Bit Oriented Protocol

Control Codes

Set Initialization Mode

1 101X000

Nonsequenced Acknowledgment

1 1001 I 10

Re ject

1001XXXX

Rece i ve Ready

1000XXXX

42

www.manaraa.com

Upon receipt of the Negative acknowledge, Station A

re-transmits the initial data frame. This time the frame

is received without errors and Station B replies with the

SDLC Receive Ready command code. The SDLC Receive Ready

command code is transposed by the Station B convertor into

the DDCMP Positive Acknowledge command code and sent back

to Station A. Upon receipt of the Positive Acknowledge

command code, Station A sends the next frame. The

processes cycles through the data frame transmission and

acknowledgment sequence until all the frames are received

without errors by Station B.

This is an example of conversion between one possible

combination of input and output protocols available with

the parameterized protocol convertor. Any combination of

the three framing technique protocols is available. A

fast, yet flexible design is required to allow conversion

between any combination of input and output protocols while

at the same time avoiding becoming a bottleneck in the

communication system.

B. SYSTEM BLOCK DIAGRAM DESCRIPTION

A block diagram of a system architecture designed to

provide this fast, yet flexible protocol conversion service

is included as Figure 4.3. The major components of the

system are a data path controller and two protocol

conversion units for each protocol supported. Of these two

conversion units per protocol, one interprets the incoming

data stream, and the other manipulates the outgoing data

stream. The central data path controller acts as the

coordinator of the conversion process, directing data

between the different protocol conversion units and the

external systems.

There are three types of inputs into the system: the

protocol select inputs, the parameter inputs and the data

inputs. The data inputs are the only dynamic inputs into

43

www.manaraa.com

un i n

ii-i

l TPf:!

PnknME I c.R I NF UTS

Uh i n

1 rn i n r

4UU1N i i\Ui — • -U

I

OPCU

1

DA;n 1 n

OU"

— PROTOCOL —

PARAMETER INPUTS

OPCU
o

Figure 4.3 System Block Diagram

44

www.manaraa.com

the system. They consist of the incoming frames to be

converted into a different protocol and passed on to

another communication station.

The protocol select inputs and the parameter inputs are

static inputs. They are interpreted at initial system

start-up and set until the system is turned off or reset.

The static inputs are comparable to the firmware used by

some system manufacturers to store the command sequences

and instructions in ROM (Read Only Memory).

In operation, the input data is taken into the data

path controller. The previously determined data path

directs the data sequence to the selected input protocol

conversion unit. The data sequence is manipulated and

passed back to the data path controller for redirection to

the output protocol conversion unit. Here the data is

manipulated again and passed back to the data path

controller. The converted data sequence is then passed out

of the parameterized protocol convertor to the receiving

communication station.

The protocol select inputs determine which protocol the

convertor should use to interpret the input data sequence,

and which protocol the convertor should use to produce the

output data sequence. These inputs control the course of

the data path. The use of a controlled data path permits

substantial flexibility in the selection of the input and

output protocols.

C. PROTOCOL CONVERSION WITH HARDWARE

The protocol conversion process is centered both

conceptually and physically around an internal virtual

protocol. The input protocol conversion unit interprets

the input data according to its parameter inputs and

converts the pertinent aspects of the input data into the

virtual protocol format. The virtual protocol formatted

data is then transferred back to the data path controller

45

www.manaraa.com

for direction to the selected output protocol conversion

unit. The output protocol conversion unit accepts its

input in the virtual protocol format, and converts the data

to the desired output protocol.

Selection of the virtual protocol is the key to the

simplification of the conversion process. This

simplification in turn allows the use of a less

sophisticated but faster logic system. A complex virtual

protocol which is only used internal to the protocol

convertor reduces the amount of dynamic flexibility

required in the conversion process. If the majority of

variations between protocols can be represented with the

internal virtual protocol, a minimum of dynamic external

inputs to the conversion operation are needed. Any dynamic

inputs to the conversion process can be viewed as probable

sources of delay because of the requirement to interpret

the inputs while the process is being executed.

Conversion between relatively similar protocols is

straight forward; only minor differences have to be

accounted for. Conversion between protocols using

different framing techniques is more complex and

subsequently more difficult to implement with a virtual

protocol. The different framing technique protocols vary

on their frame formats and how information is specified.

To aid the virtual protocol selection process, the

protocols and their compared functions can be viewed as a

three dimensional array. See Figure 4.4. The array has

the functions to be compared on one dimension (Y axis}, the

three different framing technique categories on another

dimension {X axis), and the same message framing technique

category protocols on the third dimension {Z axis).

The differences between various implementations of the

same framing technique category can be parameterized.

These differences include minor variations of the same

basic function. For example different implementations of

46

www.manaraa.com

"7 -

T
1

"/ / / ADCCP /

r/AA
nil f^L /
SLC / / HDLC /

/ »iA/ /BISYNC/ DDCMP / SDLC /

FLAG
FRAMING

TRANS-

PARENCY

ERROR
CONTROL

!

3YN

00010110

OLE

00010000

evN

00010110 01111110

N/A
BIT

STUFFING

! CRC-15 ! CRC-16
CRC-

CCITT

/

/

V

VIRTUAL PROTOCOL

Figure 4.4 Virtual Protocol Selection

47

www.manaraa.com

character oriented protocols may use different bit

sequences for the synchronization character used in

framing. Static values for each of these parameters are

input into the two protocol conversion units in use.

The common aspects of the various framing technique

categories can be implemented in the internal virtual

protocol, keeping in mind the popular implementations of

each framing technique. For example, both bit oriented and

character oriented protocols use a special flag or

character to mark the beginning and end of frames. A

similar flag is implemented in the internal virtual

protocol to accommodate the sub-function of framing.

The process of protocol conversion requires some, but

not all of the sub-functions performed by the two protocols

involved. All of the sub-functions are performed by the

communication systems external to the protocol convertor,

and many of the protocol sub-functions require

sophisticated circuitry. Redundant implementation within

the protocol convertor of any sub-function not implicitly

required for the conversion process will reduce the speed

of conversion from its optimum.

The protocol convertor performs only those

sub-functions of the protocol necessary to convert from one

protocol to another. For example, the sequence numbers of

the exchanged frames are tracked by the external

communication systems. The sequence numbers are an

indication to the external communication systems of the

order of the exchanged frames. The sequence number of a

frame lost to noise corruption or which was misdirected

will not be received. Any subsequent sequence number

received will be out of order and will indicate to the

receiving communication system that a frame was lost.

To implement sequencing as part of the protocol

convertor would require a more sophisticated logic system

and subsequently a reduced throughput of data. In keeping

48

www.manaraa.com

with the filter concept, the protocol convertor manipulates

the sequence numbers in the same way as any other data, and

passes them though to the receiving station of external

communication system. With or without the protocol

convertor, it is still the responsibility of the external

communication system to interpret the frame sequence

number. This includes detecting any out of sequence frames

and requesting a re-transmission of the lost frames.

The sub-functions required in the protocol conversion

process include:

- Framing.

- Transparency.

- Error Control.

All three of the sub-functions are part of the data link

layer of the ISO OSI reference model. It is the data link

layer that segments the input data into frames and

transforms the raw transmission facility into a

communication channel which appears free of transmission

errors [Re f . 2:p. 171.

The protocol conversion process requires the framing

sub-function because both input and output protocol

conversion units must be able to differentiate between the

three major framing techniques; character oriented, byte

count, and bit oriented. The input protocol conversion

unit must recognize where the frames of data and the

separate characters within the frames of data begin and

end. This recognition is necessary to convert the input

data into the internal virtual protocol. The same

capabilities are required of the output protocol conversion

unit. The output protocol conversion unit must be able to

recognize the character and frame boundaries of both the

internal virtual protocol and the output protocol.

The framing sub-function is realized by the insertion

of special bit sequences in the input data by the

transmitting station to indicate the beginning of a frame.

49

www.manaraa.com

When these bit sequences are detected at the receiving

station, the two stations can be synchronized. Knowing the

starting bit of the first character, the receiving station

can then divide the succeeding data stream into word length

groups of bits at the correct boundary points. Since

synchronization bit sequences typically occur at the

beginning of a block of data, frame-to-frame

synchronization is established simultaneously with

character-to-character synchronization tRef. 19:p. 1791.

The internal virtual protocol of the protocol convertor

uses a bit oriented framing technique. The bit stuffing

used by the bit oriented framing technique is the most

flexible of the three major framing techniques, because it

does not require a set character length in bits. Being the

most flexible, the bit oriented framing technique is also

the most popular, and using the most popular framing

technique in the internal virtual protocol reduces the

variation between the average expected input or output

protocol. There is a high probability that either the

selected input protocol or the selected output protocol or

possibly both will be of the bit oriented framing

technique. Reducing the difference between the expected

input and output framing technique and the internal framing

technique decreases the number of variations which must be

absorbed within the virtual protocol, and subsequently

passed on to the output protocol

.

The various protocols of the three different framing

techniques delineate frame by defining a special

synchronization character. The synchronization character

is called a sync in character oriented protocols and byte

count protocols. In bit oriented protocols the

synchronization character is called a flag.

The major difference between the different framing

techniques is selection of the sync/flag character and the

method used to determine the length of the data frame.

50

www.manaraa.com

Character oriented and byte count protocols typically use

the ASCII character SYN for synchronization. Bit

oriented protocols typically use the bit stream 01111110 as

a synchronization flag. Character oriented and bit

oriented protocols mark the beginning and end of a frame

with control characters or flags. Byte count protocols

indicate how many characters are in a frame with a byte

count in the frame header.

The sync/flag character is chosen so that its bit

arrangement is significantly different from any other

anticipated character which is regularly transmitted. The

sync/flag character must have an irregular pattern so that

any likely combination of characters before or after the

sync/flag will not appear to the system as a sync/flag

character. For example, the ASCII character SYN typically

used by character oriented protocols and byte count

protocols consists of the bits: 10010110. An irregular

pattern reduces the probability of the communication system

synchronizing its operation with the wrong bit sequence.

Interpretation of the wrong bit sequence as the

synchronization character would lead to the

mis- ident if icat ion of which groups of bits constitute

characters and which groups of characters composed frames.

The second sub-function necessary for protocol

conversion is transparency. Transparency is the

sub-function that permits the transmission of data that

would otherwise be interpreted as a control character. The

bit sequence of a control character may need to be

transmitted within a frame, as binary data, without its

usual framing significance. Transparency allows these

characters or bit strings to pass through the protocol

convertor without triggering the protocol framing

mechanism

.

American Standard Code for Information Interchange
is a seven bit plus parity code established by the American
National Standards Institute.

51

www.manaraa.com

Character oriented protocols and bit oriented protocols

use a procedure called ^stuffing' to delineate those

characters which could be incorrectly interpreted as

control characters. In character oriented protocols, a

control character DLE is inserted before any byte of data

which has the same bit pattern as a control character, but

should not be interpreted as a control character.

Inserting a DLE into the data stream is called Character

stuffing.' Bit oriented protocols use a similar method to

delineate transparent data. A single zero is stuffed into

the data stream whenever five successive ones are detected

in the data stream. The stuffed zeros prevent the receiver

from interpreting binary data within the text field of the

frame as the end of frame flag.

In order to function properly, the protocol convertor

must be able to recognize transparent data as such. The

circuits necessary to strip out stuffed bits and characters

must be present in both the protocol convertor and the

external communication systems.

The sub-function of transparency is in keeping with the

concept of the protocol convertor as a filter with limited

flexibility. The control characters are filtered out from

the transparent data, interpreted and passed out of the

convertor in the output protocol. The character or bit

stream to be stripped out by the input protocol conversion

unit is one of the parameter inputs, as well as the

character or bit stream to be stuffed back into the data

stream by the output protocol conversion unit.

The sub-function of error control must be implemented

by both the protocol convertor and the external

communication system. Error detection is performed by the

protocol convertor in order to generate the required block

check character for the output protocol . The output

protocol conversion units must be able to generate various

block check characters as required by the output protocol

52

www.manaraa.com

parameters. For example, if the input protocol specifies a

CRC-16 method of error detection and the output protocol

specifies a CRC-CCITT, the protocol convertor must be

capable of generating the required block check character

from the input data stream.

The detection of any errors in the input data stream

must first be accomplished before the expected output

protocol block check character is generated. Generating an

output protocol block check character without first testing

the input data stream for errors would indicate to the

receiving station that all frames were error free, at least

up until they passed through the protocol convertor.

Without error detection on the part of the protocol

convertor, corruption of the message data that took place

before the input data entered the protocol convertor could

not be detected by the external communication system.

The physical location of the protocol convertor

relative to the two communication stations will also

determine the need for error detection by the protocol

convertor. If the protocol convertor is physically located

with the transmitting unit of the external communication

system, with a minimum length of noise susceptible

communication channel between the convertor and the

transmitting unit, the number of errors inserted into the

data stream before the data stream reaches the protocol

convertor will be minimal. The guarantee of a relatively

noise free channel for the input data before the data

reaches the protocol convertor would remove the necessity

for error detection on the part of the protocol convertor.

The message data received from the adjacent communication

system could be assumed to be error free, and the

conversion done without any concern for error detection

within the protocol convertor. The only error control

capabilities required in this case would be a block check

character generation capability by the output protocol

53

www.manaraa.com

conversion units. The physical location of the protocol

convertor anywhere other than adjacent to the transmitting

station would require implementation of the full range of

the error control sub-function within the protocol

convertor, including both error detection and block check

character generation.

The sub-functions of line control, time-out control,

sequence control and initialization are all employed by the

external communication system. They are protocol specific

only in the particular characters required to originate the

sub-functions. These symbols are converted by the protocol

convertor, just like any other message data, with no

special significance attached. If the sub-functions are

implemented with information only control codes, their

conversion is accomplished with a translation table. The

inclusion of these sub-functions in the protocol convertor

would be redundant.

The external communication system determines the

direction of data movement, that is which station is to

transmit, and which station is to receive. There is no

requirement for the protocol convertor to be engaged in the

line control sub-function. A single protocol convertor can

only manipulate the data stream in one direction,

therefore, two separate protocol convertors would be

required for a two-way exchange of data. The use of two
2independent protocol convertors also allows full duplex

operation if the external communication system is also

capable of full duplex operation.

The concept of the protocol convertor as a static

filter implies that dynamic initialization of the protocol

convertor by an input data stream should not be required.

The protocol convertor is always ready to operate, with its

specifics of operation indicated by parameter inputs.

Full duplex is defined as simultaneous two-way
independent transmission in both directions.
[Ref. 3:p. 3061

54

www.manaraa.com

The initialization of the stations of the external

communication system takes place through the protocol

convertor, without the protocol convertor itself requiring

any initialization.

D. PROTOCOL CONVERSION UNITS

The input and output protocol conversion units are

similar in design and operation. See Figure 4.5. Both are

designed with a series of registers, programmed logic

arrays (PLA) and control gates. Together, these provide

the capability to convert between the input protocol, the

internal virtual protocol, and the output protocol.

Although more complicated than the controlled data path,

the conversion process is still simple enough to avoid the

use of relatively slow microprocessor controlled logic.

Within the protocol conversion units, the input data is

split into four paths. One path goes to the transparency

sub-function shift register, one to the framing

sub-function shift register, one to the error control

circuit and one to the control code translation shift

register.

The framing circuit detects the synchronization

character or flag and generates signals to help segment the

subsequently received data in word length groups. The

transparency circuit detects and strips any stuffed

characters or bits in the incoming protocol conversion

units. In the output protocol conversion units, the

transparency circuit detects any data that should be made

transparent to the external communication system and marks

the data as such by stuffing characters or bits as

appropriate. The error circuit generates or checks the

block check characters depending on its use in an input or

an output protocol conversion unit.

In operation, the input protocol conversion unit is

initially operating in a sync or flag search mode depending

55

www.manaraa.com

/

v

'3

TRANSPARENCY
'8

DATA

/

\ DATA
i
1

IN
i
'8

7

'8

OUT

FRAMING

i^^—
ERROR

CONTROL

j
'3

PriklTDni /'l /m-n r~UUN i KU l_ UUUt

Figure 4.5 Protocol Conversion Unit Block Diagram

56

www.manaraa.com

on the input protocol selected. The conversion unit checks

each word length group of bits of the incoming data stream

for the expected sync/flag character. The input data is

clocked into a shift register a bit at a time. After each

bit is clocked in, one word length of the bits in the shift

register are compared with a stored bit image of the

sync/flag character. A bit for bit match indicates that

the sync/flag character has been received.

Once the sync/flag character is detected, the input

protocol conversion unit starts interpreting each

successive word length of bits as a single character. This

continues until the indicated number of bytes/characters

have been received in the case of a byte count protocol, or

the ending control character or flag is detected, in the

case of character oriented and bit oriented protocols.

Multiple sync/flag characters are typically sent by the

transmitting unit to insure synchronization of the framing

sub-function, even if one sync is disrupted by noise in the

communication channel. Each sync/flag character is

detected by the protocol conversion unit, the first one

received which is followed by other than another sync/flag

character is used for synchronization.

The sync/flag search circuitry of the protocol

conversion units consists of a shift register, a storage

register to hold a bit image of the expected sync/flag

character, and a PLA dedicated to detecting equivalence

between the two registers. The sync/flag search circuitry

for all three different framing techniques protocols is

basically the same with slight variations which are

described below.

In the character oriented protocols, a special

synchronization character SYN is used to indicate the

beginning of a frame. The specific bit sequence for the

character SYN is a parameter input which is set before

operation. Parameterizing the bit sequence of the SYN

57

www.manaraa.com

character allows for variations between the different

implementations of character oriented protocols.

To implement detectors for all the control characters

used in character oriented protocols requires a storage

register for each character fait image to fae detected. Each

bit of each storage register must be compared to its

corresponding bit in the first word length of bits of the

input shift register with a detect PLA. The output of the

detect PLA is used to flag the detection of its associated

control character.

Byte count protocols, like character oriented protocols

use a special synchronization character SYN to indicate the

beginning of a frame. However, unlike character oriented

and bit oriented protocols, there is no control character

or flag to indicate the end of a frame. The header of a

byte count protocol frame includes a byte count indicating

how many of the bytes following the header are part of the

information field of the frame.

Implementation of the framing sub-function in byte

count protocols is the same as for character oriented

protocols, except there is only one control character to be

detected. The input data stream is clocked into a shift

register and compared to a stored bit image of the expected

sync character with a detect PLA. Once a sync character is

detected, the next byte is interpreted as the class of the

message, and the fourteen bits after that are the byte

count. The byte count is read and used to set a counter to

keep track of the length of the information field of the

frame

.

Bit oriented protocols also use a special character

called a flag to mark the beginning of a frame. The same

flag is used to indicate the end of a frame, and

consequently it can also be interpreted as the beginning of

the next frame. The use of the same flag to indicate the

beginning and the end of a frame is very economical in the

58

www.manaraa.com

use of hardware. There is only one control character or

flag to be detected. Only one storage register is required

to store the expected flag bit image, and only one detect

PLA is required to detect a match with the bits in the

shift register.

The bit image of the flag is a parameter input. The

parameterization of the bit sequence allows for variations

between implementations of bit oriented protocols.

Bit oriented framing is like character oriented framing

in that special characters are used to indicate the

beginning and end of a frame. The two framing techniques

are different in that character oriented framing requires

several different control characters. Character oriented

framing requires one control character for indicating the

start of a frame, one for the start of a frame header,

another to indicate the start of the text field, another to

mark the end of text field, etc. Bit oriented framing only

uses one special character called a flag to delineate a

frame. The same character is used to mark the beginning

and the end of a frame. This produces fewer control

characters to be considered in the transparency

sub-f unct ion.

The transparency circuit within the input protocol

conversion unit strips the stuffed bits and characters from

the input data and converts the remaining data to the

internal virtual protocol. Before passing the virtual

protocol data stream back to the data path controller, an

extra control bit, added to each byte, is set to indicate

the transparent data to the output protocol convertor.

The output protocol conversion unit interprets the control

bit of the internal virtual protocol and then converts the

remaining data to the output protocol. Bit stuffing or

character stuffing is then performed on the data as

required by the indicated output protocol.

59

www.manaraa.com

Character oriented protocols use character stuffing to

prevent data from being interpreted as control characters.

A control character DLE is reserved for indicating which

bit sequences should not be interpreted as control

characters, despite their usual control significance. When

a DLE character is received, the control character

detection mechanisms are turned off while the next eight

bits are shifted into the system. That way, the character

following a DLE is interpreted as data, no matter what the

bit sequence. The stuffed DLE's are stripped out of the

data stream by the receiving circuit and are not included

in the block check character.

The detection of the control character DLE is

accomplished in the same manner as the detection of the

other control characters used in framing in character

oriented protocols. As the input data stream is stepped

into a shift register, one word length of bits is compared

with a stored bit image of the DLE character using a detect

PLA . The output of the PLA is used to indicate the

detection of a DLE and to turn off all control character

detection circuits (including itself) during the next eight

bit shi f ts

.

Byte count protocols do not use the same circuitry for

the transparency sub-function. Once the initial

synchronization character is detected, and the number of

bytes in the information field read from the header, no

more control character detection is required until the

frame is completed. A counter is set with the byte count

read from the frame header and decremented with each byte

that passes through the shift register. Any bit pattern

received during the delineated information field is

interpreted as other than a control character. The SYN

character is the only control character used in byte count

protocols, and the detection circuitry for it is turned off

for the duration of the reception of the information field.

60

www.manaraa.com

Bit oriented protocols use bit stuffing to prevent data

from being interpreted as the flag character. The typical

flag character bit sequence is 01111110. Any sequence of

five ones in other than a flag character is separated from

subsequent ones with a stuffed zero. The stuffed zero is

interpreted as such by the receiving circuitry and stripped

out before the bit stream is translated into a character.

In the bit oriented input protocol conversion unit, a

detect PLA is used to search for any set of five sequential

ones as the data is clocked into a shift register. Another

register is used to hold the bit image of five ones, and is

compared with the first five bits clocked into the shift

register. When five consecutive ones are detected, the

following stuffed zero is stripped from the data stream.

The bit stripping takes place before the eight bits are

compared against the bit image of the synchronization

flag. A detect PLA is used instead of random logic to

allow for the implementation of various flag characters.

In the bit oriented output protocol conversion unit,

another detect PLA is used to search for a set of five

consecutive ones in the data stream before it is returned

to the data path controller. If five ones are detected, a

zero is stuffed into the data stream following them to

prevent the five ones and any subsequent ones from being

erroneously interpreted as the synchronization flag by the

external communication system.

According to McNamara [Ref. 31 Cyclic Redundancy Checks

(CRC) are considered to be the most effective means for

detecting transmission errors in serial data. CRC use a

feedback arrangement to combat the tendency of errors in

information transmission systems to occur in burst.

The output of the CRC depend collectively on all the

digits received in a single frame. Any single digit of a

frame received in error makes the entire frame useless.

The arrival of a digit is recorded in the stages of a shift

61

www.manaraa.com

register and manipulated as subsequent digits are

received. Once an entire frame has been received, the

status of the shift register segments are used to determine

if any of the digits were incorrectly received.

Figure 4.6 illustrates the three parts of the CRC; the

message data to be transmitted, the generator polynomial,

and the constructed message which is actually sent. The

constructed message consists of the desired message data

plus a series of M bits called the block check characters.

The block check characters are generated by appending M

zeros to the message data and dividing the appended message

data by the generator polynomial. The division is actually

the X-OR function between the K bit generator polynomial

and K bit sections of the appended message data. The

resulting quotient is discarded and the remainder becomes

the block check character. The block check character bits

are then added to the message data to form the constructed

message

.

A CRC generator produces the block check character and

appends it to the message data before the constructed

message is transmitted. At the receiver, the CRC shift

register performs a similar division operation, where the

received constructed message is divided by the same

generator polynomial. See Figure 4.7. Once the division

is completed, if the quotient contains a remainder, there

was an error in the constructed message received. That is,

the message data or the block check character was received

incorrectly, and the message must be discarded.

Several generator polynomials have been accepted as

standards for different length words. Table 4.4 list the

three most common.

62

www.manaraa.com

Example Generator Polynomial: 10 1

Example Message Data: 10 10 1 10
Appended Message Data: 100101 1000000

Division of Appended Message Data by the Generator

Polynomial

:

10 111111 Quotient (discarded)

10001 /lOOlOl 1000000
10 1

1 1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

1 1

Block Check Character: 1111

Appended Message Data: 100101 1000000
Block Check Character: + 1111
Constructed Message Data: 100101 1001 1 1 1

Figure 4.6 CRC Block Check Character Generation

63

www.manaraa.com

Example Generator Polynomial: 10 1

Constructed Message Data: 1001011001111

Division of Constructed Message Data fay the Generator

Polynom ial

:

10 111111 Quotient (discarded)

10001/100101 1001 1 1 1

10 1

11110
10 1

11110
10 1

1 1 1 I 1

10 1

I 1 1 1

10 1

110 1

10 1

10 1

10 1

Remainder

:

Figure 4.7 CRC Error Detection

64

www.manaraa.com

TABLE 4.4 COMMON CRC GENERATOR POLYNOMIALS

CRC-12 = X 12 + X 11 + X 3
+ X 2 + X 1 + 1

CRC-16 = X
16

+ X
15

+ X
2

+ 1

CRC-CCITT = X 16
+ X

12
+ X 5 + 1

The CRC-12 is used with 6-bit characters, the CRC-CCITT and

CRC-16 are used with 8-bit character systems. The length

of the polynomial is the same as the length of the burst of

errors that it can detect with 100% assurance. Any burst

of errors longer than the polynomial can be detected with a

99.9% assurance. A sixteen bit checksum such as CRC-16 or

CRC-CCITT will detect all single and double errors, and all

errors with an odd number of bits. [Ref. 2:p. 1321

Most of the currently popular protocols require the

initialization of the CRC shift register to zero before

shifting the data through. Two exceptions to this

procedure are the SDLC and HDLC protocols. They both

require a preset value in the shift register segments of

one. Once the frame is shifted through, the indication of

no errors in the transmission and reception of the frame is

a special nonzero result in the shift register segments.

The initialization of the CRC shift register is one of the

parameter inputs, with the default value being all zeros.

There are slight but significant differences between

the conversion unit circuits depending on their use. These

variations are required by the differences between the

three framing technique protocols.

The framing circuit of the input protocol conversion

unit detects the synchronization character for the

character oriented and byte count protocols, and the

synchronization flag for the bit oriented protocols. After

detecting the synchronization character or flag, the

framing circuit inserts a copy of the virtual protocol flag

in the data sequence.

65

www.manaraa.com

The input protocol conversion unit for the character

oriented protocols detects the single occurrence per frame

of the characters SYN, ETX and ETB. If there is a double

occurrence and detection of the SYN character, the last SYN

to arrive is used for synchronization. The input protocol

conversion unit for the byte count protocols detects the

occurrence of the SYN character only. The input protocol

conversion unit for the bit oriented protocols detects the

occurrence of the synchronization flag. The

synchronization flag occurs twice per frame in bit oriented

protocols. The framing circuit for the bit oriented

protocols must remember the first occurrence of the

synchronization flag to interpret the second occurrence as

the end of the frame flag.

The transparency circuit of the input protocol

conversion unit detects and strips stuffed characters or

bits in the character oriented and bit oriented input

protocol conversion units. In the byte count input

protocol conversion unit, the byte count in the frame

header is determined by the transparency circuit. A count

is kept of the subsequent bytes that pass through the

transparency circuit shift register, and a virtual protocol

flag is appended to the frame once the prescribed number of

bytes have passed through.

The error control circuit of the input protocol

conversion unit checks the block check characters of the

incoming frame, for all three types of protocols. The

generator polynomial used is typically different for the

three types of protocols. The location of the input

protocol conversion unit relative to the transmitting

station determines the requirement for setting a control

bit if errors are detected. If the unit is located

adjacent to the station with a minimum of error susceptible

channel between them, no indication of errors is necessary

from the input protocol conversion unit.

66

www.manaraa.com

The control code translation circuit of the input

protocol conversion unit converts the information control

codes of the input protocol to a generic set of codes used

in the virtual protocol. The three types of protocols use

different control codes for transfer of the same control

information, requiring a separate translation table for

each protocol type.

The framing circuit of the output protocol conversion

units detects the virtual protocol flag inserted by the

input protocol conversion unit and replaces it with the

synchronization character or flag required by the specified

output protocol

.

The transparency circuit of the output protocol

conversion unit for the character oriented protocols

detects the occurrence of any control code bit sequence in

the text field of the frame. A DLE character is then

inserted before any control code sequences occurring in the

text field of the frame by the output protocol conversion

unit. The transparency circuit of the output protocol

conversion unit for the bit oriented protocols detects the

occurrence of five consecutive ones in the data stream to

be returned to the data path controller and stuffs a zero

into the data stream immediately following the five ones.

The error control circuit of the output protocol

conversion unit for all three types of protocols generates

the block check characters required by the specific

protocol and appends them to the message data. An

indication from the input protocol conversion unit of an

error in the input data in the form of a set control bit

causes the error control circuit of the output protocol

conversion unit to invert the bits of the block check

character. Inverting the bits of the block check

characters virtually guarantees a subsequent error

indication by the receiving station of the external

communication system.

67

www.manaraa.com

The control code translator circuit of the output

protocol conversion unit detects the generic information

control codes of the virtual protocol inserted by the input

protocol conversion unit. The virtual protocol control

codes are converted to the control codes of the desired

output protocol through the use of a translation table.

E. COMMON CIRCUITS

The data path controller circuit is a simple circuit

for directing the flow of data within the protocol

convertor. The protocol select inputs are interpreted with

a decoder and use to control four multiplexers. See

Figure 4.8. The first pair of multiplexers direct the

input data sequence to the desired input protocol

conversion unit, and select the return line from the same

input protocol conversion unit to return the results to the

data path controller. The second pair of multiplexers

determine which output protocol conversion unit will be

used, and select the return line from the same output

protocol conversion unit to return the manipulated data

sequence to the data path controller. The desired data

path is determined by the selection of transistor

switches which are opened and closed according to the

protocol select inputs.

Several circuits are common to both input and output

protocol conversion units, in all three framing technique

categories. The detection function provided by the detect

PLA is required in each input and output protocol

conversion unit. In keeping with the concept of the

protocol convertor as a filter operating at sufficient

speeds to avoid becoming a bottleneck in the system, an

optimum design is required. Optimizing the most prevalent

circuit with regard to minimum clock period and minimum

surface area should ultimately produce a smaller, faster

protocol convertor.

68

www.manaraa.com

TO
IPCU

FROM
IFCU

TO
OFCU

FROM
OFCU

DATn
IN

MUX

PROTOCOL
SELEC"

^ MUX ' MUX

T"

Ul MUX
DnTh
OUT

Figure 4.8 Data Path Controller Block Diagram

69

www.manaraa.com

The character oriented protocol conversion units

utilize the detect PLA circuit the most. The character

oriented input protocol conversion units use it for

searching for the synchronization bit sequence SYN and the

transparent data marker DLE in the input protocol

conversion units. The character oriented output protocol

conversion units also use the detect PLA to search for data

sequences that resemble control characters.

The detect PLA is used in the bit oriented input and

output protocol conversion units to search for the

synchronization flag and any set of five consecutive ones.

The byte count input protocol conversion units, like the

character oriented input protocol conversion units, use the

detect PLA to search for the synchronization bit sequence

SYN.

In operation, the detect PLA compares two different

data sequences and gives a positive indication if there is

equivalence between the two. Each individual bit of the

input data stream is combined in the PLA with the

corresponding bit of the bit image of the character to be

detected using the X-NOR function. See Figure 4.9. If the

two bits are identical, the X-NOR function produces a

high output, otherwise it will be low. Within the PLA, the

output of the eight X-NOR functions are combined together

with an AND function. The output of the AND function

indicates if the expected sync/flag character was

received. If all the bits in one word length of the shift

register match the bits of the stored sync/flag character,

each of the X-NOR functions will output a high value to the

input of the AND function. The subsequent high output of

the AND function indicates the sync/flag character has been

received. Any bit in the shift register which does not

match the corresponding bit of the stored sync/flag

character will cause a low value to be sent from the X-NOR

function involved to the AND function. A low output of the

70

www.manaraa.com

r>
o
c>
o

y

L>

>

Figure 4.9 Detect PLA Functional Equivalent

71

www.manaraa.com

AND function indicates that least one bit of the current

set of bits in the shift register does not match the bit

image of the expected sync/flag character.

PLAs are preferred over random logic in circuit design

for several reasons. Using a PLA allows for the

implementation of changes in the logic of the circuit,

without requiring the redesign of the entire system. The

shape and size of a PLA is dependent only on the number of

inputs and outputs and the number of product terms required

to implement the desired function, so any changes in the

logic required of the circuit can be accomplished by just

redesigning the PLA. If the system is designed with some

slack as to the area occupied by a PLA, minor changes can

be absorbed without effecting the rest of the system.

In some implementations, the use of a PLA can increase

the speed of operation of the circuit. The minimum clock

period of a circuit is determined by the longest signal

path. The longest signal path should produce the longest

delay in a circuit. If by using a PLA the longest signal

path is shortened, the clock period can be reduced. A

shorter clock period equates to a faster circuit.

One drawback of PLAs is the number of transistors

required to implement the circuit. Depending on the

function implemented with the PLA, the use of a PLA may

require more transistors for the overall circuit, even

though the longest signal path is shorter. An increase in

the number of transistors requires more area on a chip for

the circuit.

To determine the best method of implementing a circuit,

the advantages and disadvantages of using PLAs must be

weighed against each other, for the particular logic

function desired. In designing the detect PLA the speed

and area factors of a PLA as compared to a random logic

version of the same circuit were considered.

72

www.manaraa.com

Four different PLAs were compared with each other and

the random logic equivalent. The random logic equivalent

was used as a standard for comparison. The clocked input

driving circuitry, which is similar for each, was not

considered for either the PLAs or the random logic

circu it.

To implement the detect circuit with random logic

requires three NOR gates and two inverters for each pair of

bits to be compared. One multiple input AND gate is

required to collect the NOR gate outputs. See Figure 4.10

and Figure 4.11.

Figure 4.10 Random Logic Detect Circuit for Two Bits

The NOR gates, and the inverters requires two transistors

each for a total of ten transistors to implement the X-NOR

function between two bits. The multiple input AND gate

requires a transistor for each input and one more for the

pull-up transistor. A sixteen input detector circuit which

would detect equivalence between two sets of eight inputs

would require a eighty transistors for the X-NOR function

and nine for the AND function, for a total of eighty-nine

transistors. The longest signal path is eight transistors.

73

www.manaraa.com

Figure 4.11 VLSI Implementation of a Random Logic

Detect Circuit for Two Bits

74

www.manaraa.com

There are many different ways of implementing the

detect circuit with a PLA. The equivalence function can be

partitioned into any combination of pairs of bits. Each

bit pair can be tested for equivalence independently of all

the other bit pairs. The only requirement for the grouping

of the inputs is that any two bits to be compared must both

use the same PLA.

The detect circuit calls for the comparison of eight

pairs of bits which can be accomplished in four symmetric

methods. The first method is a single PLA with eight pairs

of inputs and one output. The second method is two PLAs

with four pairs of inputs each and an AND gate to tie

together their outputs. The third method is four PLAs with

two pairs of inputs each and a four input AND gate. The

fourth method is eight PLAs with one pair of inputs, and an

eight input AND gate. The single pair input PLA is

included only for completeness.

The longest input path in the PLA implementation of the

the X-NOR and AND functions is a function of the number of

inputs. There is one more transistor in the longest signal

path than there are inputs to the PLA. See Table 4.5. The

longest signal path for a single bit in the random logic

implementation of the circuit is eight transistors. The

number of transistors in the longest signal path is only

part of the consideration. What type of gates those

transistors compose, and how many of the inputs to those

gates are active at one time also has an effect on the

total time required to transverse the longest signal path.

The length of the longest signal path can be measured

in single inverter delay units or channel transit time

tau. For small V.ds*

tau = L 2 /U*V,
as

75

www.manaraa.com

a
H-t

u
o

o
a
2
<
OS

a
E-

a

<
cu
X
O
O
cn

X
E-
U
z
Ed

X
H
<C
CU

z
(-1

cn

04

eg

E-

ID

p <n

C (0

<u <u CO r-
u in cm

S-

(U £
a. i-.

£
P
<TJ

a. -i
(TJ

P P c^ -^

V) O —

«

—4

at £-•

0)
c
o
J

cm

-. <r» —

3
03

04 ao

flj PH
CU (D

C
P S~ r- 0"^ ID
W <u

—»

<U P
0) c
C H-l

o
J

T3
i- (U

a> S4

,q —
£ 3 —

*

CM •V
3 a
z <u

OS

w
i- e
0) i-

J3 (U 10 TT &
S H If) 10 —
3 CM
2 vm

O

U)

P
*t 3
j a VO 03 <«

Cu c

CO

00

CM

76

www.manaraa.com

Where L is the length of the gate in centimeters, U is the

mobility of the electrons in centimeters squared per

volt-second, and V, is the voltage difference between

the drain and the source of the transistor in volts.

[Ref. 201

The NOR gate is the principal building block of the

random logic detect circuit, and all of the NOR gates used

have two inputs. The delay induced by a NOR gate is a

function of the number of active inputs. The detect

circuit is used primarily to detect the synchronization

characters or flags, which occur on the average of twice

per frame; twice at the beginning, or once at the beginning

and once at the end. If the average total number of bytes

in the frame is much greater than two, ninety-nine percent

of the time the circuit will be indicating no equivalence.

This means at least one of the eight pairs of bits will not

be the same ninety-nine percent of the time. Considering

an equal probability of receiving a one or a zero at any

time, there is a fifty percent probability of the two

inputs to a NOR gate being the same and a fifty percent

probability of the two inputs being different. If the two

inputs are both low, there is no delay experienced by the

signal. This occurs twenty-five percent of the time. If

one of the inputs is low, and the other one is high, the

signal will experience a single tau delay. This occurs

fifty percent of the time. If both of the inputs are high,

the signal experiences a delay less than tau. This also

occurs twenty-five percent of the time. Therefore, the

signal will be experiencing a single tau delay or less

through each NOR gate of the circuit.

The delay imposed by a NAND gate is proportional to the

number of inputs, regardless of the state of the inputs.

As the number of inputs to a NANO gate is increased the

length of the pull-up transistor area must be increased

proportionally. As the area of the pull-up transistor is

77

www.manaraa.com

increased, the amount of delay imposed on the signal is

also increased.

tauNAND
= n * tau

Where n is the number of inputs.

Using more PLAs of fewer inputs reduces the length of

the longest signal path internal to the PLA . But, with the

addition of another PLA comes the requirement for an NAND

gate to combine the outputs of the multiple PLAs. The

delay imposed on the signal by the NAND gate is

proportional to the number of inputs, causing the total

delay to actually increase as the number of PLAs is

increased past four. The delay experienced by the signal

through PLA is shorter when more PLAs of fewer inputs are

used, but the additional delay imposed by the requisite

NAND gates negates any gains achieved by using more than

four PLAs.

A unique minimum could be determined if the equivalence

function could be partitioned into continuous numbers of

inputs. However, the discrete partitioning of the

equivalence function produces numbers of inputs of powers

of two only. Table 4.5 indicates a local minimum at four

PLAs with two pairs of inputs each.

The number of transistors used in the implementation of

the detect circuit with a PLA is a function of the number

of inputs. If k is the number of inputs into a single PLA,

the total number of transistors T required to implement the

logic of the PLA alone, not including any input or output

drivers is:

T = (k + 1)*2k/2

This relationship imposed on the discrete numbers of inputs

allowed by the partitioning of the equivalence function is

78

www.manaraa.com

presented in Table 4.6. The random logic implementation of

the detect circuit requires eighty-nine transistors.

Related to the number of transistors in each PLA is the

area the PLA occupies on the chip. Circuit areas are

typically measured in square length units. The length unit

is defined as the fundamental resolution of the fabrication

process

.

. . . (the length unit) is the distance by which a
geometrical feature on any one layer or on another layer
may stray from another geometrical feature on the same
layer or on another layer, all processing factors
considered and an appropriate safety factor added
[Ref. 20 :p. 481.

The areas of the different PLA implementations are

presented in Table 4.7. The area of the random logic

implementation of the detect circuit is approximately

thirty-six thousand square length units.

When considering speed of operation and the area

occupied by the circuit, four PLAs with two pairs of inputs

each produce the optimum design. Although eleven percent

slower than the random logic design, the four PLAs occupy

approximately two thirds of the area, and use almost

exactly the same number of total transistors. The design

flexibility incurred by using PLAs is another factor in

their favor.

Each output protocol conversion unit requires a Cyclic

Redundancy Checks (CRC) shift register to generate block

check characters. The input protocol conversion units also

require CRC shift registers if the protocol convertor is to

be located anywhere other than physically adjacent to the

transmitting station of the external communication system.

The input protocol conversion units use the CRC shift

registers to check the input data for errors.

The CRC shift register circuit is the same for both the

input and the output protocol conversion units. Error

detection is accomplished with the same basic circuit as

block check character generation. There are some

79

www.manaraa.com

o

o

X
o
o
Z
<
as

O
f-

Q
Ci3

Ct

a.
z
o
o
en
<
CO

o
cn
i—

i

CO
z
<c
as
t-

<c

a.

O
OS
Ed
03
X
Z

CO

CtJ

03

H

0> O

o
en

ao

V0
eg

en

en
CO

in

i-

o
u

^H m
ITJ •-

«

P (0

o c
H rd

u
E-

cm o ^r V0
in cr> CO IT)

CO CM
T

in

s-

(U o
+-> 4J

(TJ (0

U —
<n

a c
z fl

< s~

t-

CM 03

•a

0) i-

J3 —
e s
3 O
Z 0)

as

w

o o
p

i* m
4, —
s c
3 fO

Z 5-

e-

w

«S :

_] Q
CU C

— CM 00

CM T O
tn t cm
co —

vo

U3 00 CM

80

www.manaraa.com

o
u oj

o
J d U

Hi o <r r» ^r ^<

z U 4-> in c- CO CO

o Oi • • • •

a <-w fd <T>

z <*H dU
«a: •—

ex Q
O —

«

—

.

o 00 eg
E- (0 03 eg c^ eg if)

4J 0) O c- V0 if)

Q o J* r»- If) T m«
U H < 00 to eg eg
Qi vo
«S
04
z TJ
o S- CU

a V s-

13 — eg •^ 00
en S 3
<c 3

z
D
CD

CO a
H
HH
o — in r>- cn
o (0 eg 00 if) (0

0. <u O 00 — o
1—

1

u e- r«- <0 CO
o »xi CO

10
ej

<
-4
cu

-M t^ CO
Cu T3 eg ^« r» i—

i

o ^ eg

~* ^ CO

<
Ed
OS £
-4 -»- en If) •-4 cn

a eg cn CO on
c CO —« —

tt CU

* J
TT

U)

Ed M
J < 3
cn J a 10 00 ^r eg
< 04 c
H i—

i

81

www.manaraa.com

peripheral differences required by the difference in the

detection function and the generation function.

A CRC shift register is a shift register with an X-OR

gate inserted between each stage of the shift register.

See Figure 4.12 and Figure 4.13.

INCLUSION

CONTROL

DATA
IN SR \ DATA

OUT

FEEDBACK

Figure 4.12 CRC Shift Register Segment

As bits are clocked into the shift register, they pass

through an X-OR gate before arriving at the subsequent

stage of the shift register. The other input to each X-OR

gate is a feedback term from the input data. The output of

the X-OR gates are fed into the next stage of the shift

register.

The configuration of a CRC shift register is dependent

on the generator polynomial. The number of shift register

stages is equal to the degree of the generator polynomial.

The number of X-OR gates connecting the feedback line to

the shift register segments is equal to the number of terras

in the generator polynomial. If a term is included in the

generator polynomial, the output of that shift register

segment is combined with the feedback term and passed

82

www.manaraa.com

B. K

Figure 4.13 VLSI Implementation of a CRC Shift

Register Segment

83

www.manaraa.com

through an X-OR gate into the input of the next shift

register segment. If the term is not to be included, the

shift register segment output is connected to the input of

the next shift register segment without any effect by the

feedback term.

In a parameterized protocol convertor, any combination

of terms for the CRC generator polynomial should be

available. To accomplish this, all of the shift register

segments are equipped with X-OR gates. The inclusion of

the X-OR'd feedback terms is controlled through the use of

pass transistors. If a term is to be included in the

generator polynomial, the controlling pass transistors are

set such that the output of the shift register segment goes

through the X-OR gate and is combined with the feedback

term. Otherwise the controlling pass transistors bypass

the the X-OR gate completely, and the output of the shift

register segment is fed directly into the input of the next

shift register segment.

The first and last terms of the generator polynomial

are always included, so there is no pass transistor

controlling the path of the first shift register segment

output. The last term, even though it is always included,

still uses the controlling pass transistor to allow for a

variable CRC word length. The length of the CRC shift

register is a function of the system word length; a

parameter input.

The input protocol conversion units uses the CRC shift

register for error detection. Once the input data stream

has been shifted through the CRC shift register, the shift

register segments are tested to determine if any errors

were detected in the incoming data stream. In the case of

character oriented or byte count input protocol conversion

units, this is accomplished by combining the status of all

the shift register segments into a NOR gate. If the output

of the NOR gate is one, there were no errors. A zero

84

www.manaraa.com

output from the NOR gate indicates the frame or the block

check character were received with errors. Bit oriented

input protocol conversion units require the shift register

segments be tested against a stored bit image to determine

if any bits were received in error. This is accomplished

using a detect PLA.

The process of passing a frame through a CRC shift

register destroys the information content of the frame.

This requires the parallel input of the received frame into

both a CRC shift register for error detection and other

shift registers for other protocol sub-function

manipulations. The parallel input is accomplished by

copying the input data stream into multiple shift registers

s imul taneously

.

The output protocol conversion units use the CRC shift

register for block check character generation. As the

converted data stream is output back to the data path

controller, the bits are copied into the CRC shift

register. When the second virtual flag is received by the

output protocol conversion unit, indicating the end of the

message data, the contents of the CRC shift register are

appended to the converted data stream. Once all the bits

have been clocked through the CRC shift register, the shift

register contents are the block check characters.

Each of the different framing techniques relies on a

set of bit sequences called control characters to

accommodate the required sub-functions of operation. Bit

oriented protocols use the synchronization flag, and byte

count protocols use the SYN character for synchronization.

The character oriented protocols by their design use the

most control characters. Depending on their use, some

control characters require activity on the part of the

protocol convertor, others can be passed on to the external

communication system as information. Those control

characters that require activity by the protocol convertor

85

www.manaraa.com

must be detected and a response initiated. These include

the character oriented protocol transparent data indicator

character DLE, and the synchronization character SYN.

Those control characters that do not require activity by

the protocol convertor are converted to a set of virtual

protocol control characters with a translation table and

passed to the output protocol conversion unit. There the

virtual protocol control characters are converted back into

those control characters expected by the receiving

station. Examples of information conveying characters

which do not require activity on the part of the protocol

convertor are the character oriented protocol ACK

acknowledge, and ENQ enquiry. In keeping with the concept

of a flexible protocol convertor, the translation tables

should be stored in an accessible medium.

F. SUMMARY

A typical example of protocol conversion was described

to illustrate the basic requirements of the protocol

conversion process. Examples of the frame formats,

parameter inputs and the control code translation table for

two different protocols were followed by a frame-by-frame

description of the conversion process.

Next, a description of the convertor architecture

required to implement a fast, yet flexible protocol

conversion process was presented. The top-level

description included the three different types of inputs

into the system and the data path through the system.

The top-level architecture description was followed by

an in-depth description of the protocol conversion process

using only hardware. The central concept of the conversion

process is a virtual protocol used internally to the

protocol convertor. Selection of the components of the

virtual protocol is the key to simplifying the conversion

process

.

86

www.manaraa.com

Next follows an analysis of the protocol sub-functions

required of the protocol convertor; framing, transparency,

and error control. Framing is required for the recognition

of and establishment of frame boundaries. Transparency

permits the transmission of data that would otherwise be

interpreted as a control character. Error control

generates block check characters and checks input data for

transmission errors. The inclusion of the sub-functions of

line control, time-out control, sequence control and

initialization in the protocol convertor is unnecessary

The implementation of these functions by the external

communication system is sufficient.

The description of the required sub-functions is

followed by a description of the circuits used to implement

them. The framing circuit detects the synchronization

character or flag and generates signals to help segment the

subsequently received data in word length groups. The

transparency circuit detects and strips any stuffed

characters or bits in the incoming protocol conversion

units. In the output protocol conversion units, the

transparency circuit detects any data that should be made

transparent to the external communication system and marks

the data as such by stuffing characters or bits as

appropriate. The error circuit generates or checks the

block check characters depending on its use in an input or

an output protocol conversion unit.

Two circuits of the protocol convertor are described in

detail, the detect PLA and the CRC Shift Register. In

keeping with the concept of the protocol convertor as a

filter operating at sufficient speeds to avoid becoming a

bottleneck in the system, an optimum design is provided for

the most prevalent circuit, the detect PLA. The error

control functions provided by the CRC Shift Register are

usually implemented with software and the CRC Shift

Register is a hardware implementation of the CRC algorithm.

87

www.manaraa.com

V. IMPLEMENTATION

A. CHIP DESIGN

Several relatively large circuits are required in each

protocol conversion unit, such as the detect PLA. The

standard 40 pin VLSI package can support a silicon chip of

approximately 7 millimeter square dimensions

[Ref. 20:p. 1313. Using 2.5 micrometer unit length

technology, 7 square millimeters equates to 2800 square

lambda for the entire protocol convertor.

The surface area available for the protocol convertor

circuit is reduced somewhat from the 2800 square lambda by

the area required for input and output pads. Using the

typical pad dimension of 100x150 lambda [Ref, 213, and

placing 10 pads on each side of the chip reduces the

available area to approximately 2500 square lambda.

Newkirk and Mathews [Ref. 213 list a shift register

design which occupies 24x90 lambda per bit. See

F igure 5.1.

IN. »
\s

PHI1

m—1/° .OUT

PHI2

Figure 5.1 Shift Register Segment

The shift register requires a two-phase nonoverlapp ing

clock (PHI1 and PHI2) for storage and shifting of the data

through the register. Using this design produces a 192x190

lambda design for an eight bit shift register.

The detect PLA with two pairs of input described in

Chapter Four occupies 195x143 lambda. See Figure 5.2.

88

www.manaraa.com

m

Figure 5.2 A Two Pair Input PLA

89

www.manaraa.com

Four PLAs with two pairs of inputs each are required to

detect the equivalence between eight pairs of bits for a

total area of 780x195 lambda for each detect PLA.

The custom designed CRC shift register requires an area

of 90x110 lambda per bit. See Figure 4.13. A sixteen bit

CRC shift register can be constructed as two vertically

stacked eight bit CRC shift registers for a total area of

720x220 lambda.

The major consideration in determining the layout of

the chip is the central location of the data path

controller. See Figure 5.3. All input signals must pass

through the data path controller twice. Centrally locating

the data path controller makes the average path to both the

input and output protocol conversion unit the shortest

possible .

The input and output signals can be bussed through the

protocol conversion units or routed in the 200 lambda wide

channels between the units. Bussing the signals through

the protocol conversion units places routing constraints on

the V,j and ground net. There is sufficient area on the

chip to utilize channels between the different protocol

conversion units and the data path controller. The input

and output signals run horizontally; parallel to the V,,,

ground and clock signals. All of these signals are

implemented on the metal layer of the chip.

The control signals for the different protocol

conversion units are also routed through the 200 lambda

wide channels between the units. These signals run

vertically, perpendicular to the input and output signals.

The control signals are implemented in polysilicon.

The system clock is dependent on the signalling speed

of the external communication system. The modem which

demodulates the digital information from the analog signal

also extracts a clock signal from the analog signal. The

clock signal is input into the clock input of the protocol

90

www.manaraa.com

p
A
D
o

PADS

CHARACTER
ORIENTED

IFCU

CHARACTER
ORIENTED

OPCU

BYTE
COUNT
IFCU

DATA
PATH

CONTROLLER

BYTE
COUNT
OPCU

BIT
ORIENTED

IPCU

BIT
ORIENTED

OPCU

PADS

Figure 5.3 Chip Floor Plan

P
A
D

91

www.manaraa.com

convertor and controls the timing of the system. The modem

extracts a single phase clock signal from the input data,

which is converted into a two-phase, nonoverlapping clock

signal within the protocol convertor. The two-phase clock

signal is generated with the clock pad circuit described by

Newkirk and Mathews [Ref. 21:p. 1111. See Figure 5.4.

The predicted signal delay is a function of the longest

shift register used in the conversion process. The

majority of the protocol conversion process is accomplished

on a single byte at a time. It is necessary to store one

byte within the protocol convertor to detect bit sequences

dependent on the adjacent relationship between eight

consecutive bits. With one byte in storage within the

protocol convertor, the overall transfer of information is

going to be delayed by one byte of transfer time. For

example, if the external communication system is exchanging

information at a rate of 1200 bits per second, or a period

of 0.833 milliseconds per bit, a delay of eight bits would

equate to a total transfer delay of 6.67 milliseconds. The

transfer delay incurred by passing the information through

the protocol convertor would not be evident to the user on

either end of the external communication system. The

transmitted data would just arrive eight bit times later

than if it had not passed through the protocol convertor.

In contrast, if the entire frame of data is stored in

the protocol convertor, the delay would be noticeable. The

frame would have to be stored, manipulated, and then passed

on to the external communication system, A byte count

protocol frame can contain up to a maximum of 16373 bytes

of data [Ref. 3:p. 1581. Using the same 1200 bits per

second information exchange rate, it would take 110 seconds

to receive and store the 130984 bits of the frame. If the

same parallel processing techniques were used the actual

processing time would be equivalent to the single byte

storage method. Ignoring the equivalent processing times,

92

www.manaraa.com

CLK IN ,

£»
> bo—i PHI:

t>

;o-

O-W

Figure 5.4 Clock Pad Circuit

PHI1

93

www.manaraa.com

it would take another 110 seconds to put the converted

frame back on the communication channel at the same 1200

bits per second. The entire process, not counting the

processing time, would take 220 seconds; a factor of
333x10 slower than the single byte storage method. This

is a worst case analysis, using the longest frame

expected. If the average frame was just one half of the

maximum possible length, the total frame storage technique

would still be a factor of 16.5x10 slower.

The success of the single byte storage method of

protocol conversion depends on the minimum clock period of

the circuit. The single byte storage method processes the

frame one byte at a time, without any processing delays

other than the initial shift register fill delay. The

entire circuit must be capable of operating with a clock

period less than the time required for one bit to shift

into the shift register. The entire parallel processing of

the byte of data held in the shift register must take place

before the next bit is shifted in. An information transfer

rate of 1200 bits per second corresponds to a minimum

processing period of 0.833 milliseconds.

The circuits of the protocol convertor all operate in

parallel, so the delay through them is not cumulative. The

overall delay of the protocol convertor will be the longest

delay of any one of the circuits. The delay of each

circuit is independent on any delay in the other circuits.

The two circuits of primary concern in delay estimation are

the two circuits with the longest signal paths; the CRC

shift register circuit and the detect PLA circuit.

The two basic building blocks of the CRC shift register

circuit, inverters and NOR gates, both produce the same

delay if only one of the NOR gates is active. This is the

worst case condition, as the delay for the NOR gate

decreases with an increase in the number of active gates.

94

www.manaraa.com

The inverter Z ratio of pull-up transistor area to

pull-down transistor area is five to one throughout. This

is slightly more than the Mead and Conway [Ref. 201

recommended four to one ratio to compensate for the pass

transistors between the inverters used in the shift

register segments. There is a maximum of one pass

transistor between any two inverters, so no level

restoration is needed.

The two clock phases of the circuit need to be of

different duration because of the X-OR logic circuit

between the output of one shift register segment and the

input of the next. Although this logic is only included in

the signal path as a function of the variable generator

polynomial, it must be considered present in between all

shift register segments when considering worst case timing

delays

.

Phase One of the clock permits data to be stored on the

first inverter of the shift register segment inverter

pair. See Figure 4.13. There are no logic functions

between the two inverters of the shift register segment, so

the duration of Phase One can be minimal. Since stray

capacitance delays are at least equal to the circuit delay,

the total delay for Phase One will be:

Phi j = 2*k*tau = 10*tau

Where k is the ratio of pull-up transistor area to

pull-down transistor area and tau is the technology

dependent unit delay.

Phase Two of the clock permits the data signal to pass

through the second inverter of the shift register segment.

This signal then passes through the X-OR logic if that

particular term of the generator polynomial is to be

included, or bypasses the X-OR logic if the term is not to

be included. The longest signal path through the X-OR

95

www.manaraa.com

logic is four gates. Doubling the delay for stray

capacitance, the minimal length of Phase Two must be:

Phi
2

= 8*k*tau = 40*tau

Where k is the ratio of pull-up transistor area to

pull-down transistor area and tau is the technology

dependent unit delay.

Path delays are minimal because of the relative

proximity of connected circuits, and long runs between

circuits are done in metal. They are approximated as 9 tau

for path delay and another 8 tau for driver delay.

All total, Phase One should be approximately 30 tau,

and Phase Two should be approximately 60 tau. The total

delay of the circuit requires a minimum of a 90 tau clock

period. With tau equal to approximately 0.3 nanosecond,

this circuit could operate with approximately a

30 nanosecond clocking period, or at a frequency of

33 megahertz.

The internal signal path of the detect PLA is composed

of single input NOR gates with a Z ratio of 4. Phase One

of the clock can again be minimal because of the lack of

combinational logic functions between the input shift

register and the PLA:

Phi
j

= 2*k*tau = 8*tau

Where k is the ratio of pull-up transistor area to

pull-down transistor area and tau is the technology

dependent unit delay.

The longest signal path through the four input PLA is

5 tau which is added to the external NAND gate signal path

of 4 tau for a total signal path delay of 9 tau. See

Table 4.2. Again doubling the value to account for stray

96

www.manaraa.com

capacitance delays, the total minimum period of Phase Two

is:

Phi
2

= 18*k*tau = 72*tau

Where k is the ration of pull-up transistor area to

pull-down transistor area and tau is the technology

dependent unit delay.

Path delays are again approximated as 9 tau and driver

delays as 8 tau. All total, Phase One should be

approximately 25 tau and Phase Two should be 90 tau. The

total delay of the circuit requires a minimum of a 115 tau

clock period. With a tau equal to approximately

0.3 nanoseconds, the detect PLA can operate with

approximately a 34.5 nanosecond clocking period, or at a

frequency of 29 megahertz.

Both the CRC shift register circuit and the detect PLA

circuit are capable of operating with a sufficiently short

clock period to permit the use of the single byte storage

method of protocol conversion.

B. SYSTEM DESIGN

There are two alternatives to implementation of a

parameterized protocol convertor within a communication

system. The protocol convertor can be installed internally

to the communication system hardware, or externally in its

own system environment.

The internal implementation of the parameterized

protocol convertor is recommended for several reasons:

- Simplification of the error control sub-function.

- To minimize redundant hardware.

The error control sub-function of the protocol

conversion units would not be required to perform error

detection if the protocol convertor is located adjacent to

the transmitting unit of the external communication

97

www.manaraa.com

system. Locating the protocol convertor internal to the

transmitting station of the external communication system

would guarantee a noise free channel between the

transmitting station and the protocol convertor. The data

received into the protocol convertor could be assumed to be

error free and the only error control functions required

would be block check character generation by the output

protocol conversion units.

Locating the protocol convertor internally to the

communication system also reduces the number of MODEMs and

serial interfaces required to interface the convertor to

the communication system. The protocol convertor expects

input signals in the same format as those sent to a serial

interface by a central processing unit. The output of the

protocol convertor is in the same format as the data a

central processing unit places on its busses to be sent to

a serial interface. If the protocol convertor is located

internal to the communication system, it can be spliced in

between the serial interface and the output port of the

central processing unit. Locating the protocol convertor

within the communicating system allows the protocol

convertor to utilize the services of the serial interface

and MODEM already in place. This reduces the amount of

hardware required to integrate the protocol convertor into

the communication system.

Two alternatives are possible if the protocol convertor

is to be installed as a separate unit within the

communication system. The choice of which implementation

depends on the intensity of expected traffic through the

protocol convertor.

If a continuous traffic load is expected, a fast, but

hardware intensive implementation should be used. This

implementation requires two half-duplex MODEMs and two

serial interfaces per protocol convertor, or one

full-duplex MODEM and two serial interfaces per protocol

98

www.manaraa.com

convertor. The design of the protocol convertor as a

filter with minimal storage implies an ability to pass

information through the convertor as fast as it is

received. Manipulating data without storage requires a

MODEM channel and a serial interface to receive the input

data stream, and another MODEM channel and serial interface

pair to transmit the output data stream at the same time.

A single MODEM channel, serial interface pair would not be

sufficient. Half-duplex MODEMs can only transmit or

receive at one time. Two of these would be required to

receive the input data and transmit the output data

simultaneously. A full-duplex MODEM can both transmit and

receive at the same time, but only if the two data

sequences are separated in the frequency spectrum. One

full-duplex MODEM would be sufficient, if each MODEM

channel was equipped with its own serial interface.

In a less intensive traffic load environment, a slower,

but less expensive implementation could be used. A single

half-duplex MODEM and a single serial interface could be

used between the protocol convertor and the communication

channel. The data received by the MODEM would be passed

through the serial interface to the protocol convertor and

stored until the entire frame was received and converted.

The output data would then be fed back to the MODEM through

the serial interface. This implementation would be much

more conservative in the use of hardware, but the required

storage of the converted data would defeat the concept of

the protocol convertor as a fast filter.

C. SUMMARY

A top-level floor plan for VLSI implementation of the

parameterized protocol convertor was presented, detailing

signal routes and circuit locations. Next a detailed

analysis of the predicted signal delay through the two

major circuits, the detect PLA and the CRC Shift Register,

99

www.manaraa.com

was presented. The analysis shows both circuits are

capable of operating at sufficiently high clock frequencies

to allow use of the single byte storage method of protocol

conversion. Two possible system-level implementations were

presented, one for a continuous traffic load, and one for

periodic message traffic.

100

www.manaraa.com

VI. CONCLUSIONS

There is a need for a flexible, yet fast protocol

convertor. In many instances, protocol standards have been

misinterpreted, equipment has been forced into service it

was not designed for, or systems have been developed

without due consideration for interoperability. Any

situation where two stations of a communication system can

not communicate because of different protocols, no matter

what the source of the difference in protocols, requires a

protocol convertor.

The conflict between requirements for speed and

flexibility in a protocol convertor can be resolved with a

careful analysis of how much speed and what degree of

flexibility is required. All systems have an inherent

limitation in their communication speed capability, from

one of many possible sources. If a protocol convertor can

be designed to operate faster than the slowest component of

the communication system it is designed to support, it can

avoid becoming the bottleneck in the system. Dynamic

flexibility can be sacrificed to increase this speed

without limiting the application variations of the design

if a limited degree of static flexibility is maintained.

The choice of which flow architecture to use also

effects the speed of operation. If the design is patterned

around a control flow architecture, the serial operation of

the design will limit its possible speed. If the parallel

constructs of a data flow architecture are used, the speed

of operation can be greatly enhanced. The functions of a

protocol convertor lend themselves to a parallel

architecture approach, where many operations can take place

s imul taneously

.

101

www.manaraa.com

The design presented to meet the requirements of speed

and flexibility has some, as of yet, unresolved problems.

The major one being how to accomplish the bit and character

stripping and stuffing. Early on in the analysis of the

problem It was decided that to facilitate a high rate of

data moving through the protocol convertor, there should be

a minimum of storage of the data. Optimally, the minimum

storage should be one bit, but the relative position of

each bit in an eight bit byte is instrumental in

determining the meaning of the bits. Because all eight

bits are needed, the minimum storage is one byte. This

minimum of storage is the bane of any stripping and

stuffing circuit. The functions of stripping and stuffing

are relatively straight forward when an entire frame is

available in a storage buffer, but when only one byte at a

time is available for manipulation, stripping and stuffing

bits or characters becomes difficult.

As data is clocked into the protocol convertor, if a

bit is stripped by the transparency circuit there is

nothing to clock out of the protocol convertor when the

empty bit interval arrives at the output. The concept of

minimal storage requires data to be clocked out at the same

rate it is clocked in. Only a single byte is ever stored

within the convertor. If an entire character is to be

stripped from the data, as in character oriented protocols,

there would be a eight bit intervals without any data

contents. To compensate for the empty bit intervals would

require speeding up the input data or slowing down the

output data, or both.

A similar problem occurs when bits or characters must

be stuffed into the data by the transparency circuit. The

data does not contain holes where these characters or bits

are supposed to be inserted. Making room for the stuffed

bits would require slowing down the input data or speeding

up the data being output, or both. Serial, synchronous

102

www.manaraa.com

transmissions are by design strictly clocked signals. The

data is modulated with its own clock signal to aid in

determining the segregation of the bits. The clock signal

is constant, regardless of the requirements of a protocol

convertor between the receiving station and the

transmitting station.

Unfortunately, the transparency sub-function and

consequently an ability to perform bit and character

stripping and stuffing is required to implement a

parameterized protocol convertor. The passage of

transparent data between two stations is required in most

applications. Ignoring the designation of transparent data

as such would have far reaching effects on other aspects of

the conversion process. For example, the character DLE

used by character oriented protocols to indicate

transparent data within the information field of a frame is

not included in the block check characters. If the DLE

character is not stripped before reaching the error control

circuitry, the block check characters will never indicate

an error free reception of the frame.

Another problem caused by the self-imposed requirement

for minimal storage of the data occurs in the manipulation

of byte count protocols. The length of the information

field in a byte count protocol is included as part of the

header contents. The header of a frame is transmitted

first and subsequently arrives first at its destination.

The interpretation of the byte count frame by the protocol

convertor is no problem. The byte count is read from the

header and a counter is set with the value. As the frame

is clocked through the convertor, the passage of each byte

decrements the counter by one. When the count reaches

zero, the frame has been received in its entirety.

The transmission of byte count protocol frames is a

different matter. The byte count of any protocol frame can

only be determined by counting the bytes as they pass

103

www.manaraa.com

through the convertor. The entire frame must be received

before a byte count can be determined. The concept of

minimal storage requires the converted data to be output as

the input data is received. Only a one byte delay is

allowed. The location of the byte count in the header of

the frame, which is transmitted first requires a knowledge

of the total number of bytes to be received while those

bytes are still being input.

One possible solution to this problem would be to use a

set frame length for output from the byte count protocol

conversion units. For example, in a byte count frame, the

maximum frame length is 16363 bytes of message data, ten

bytes of frame header and two bytes of trailing block check

characters. If the maximum frame length was assumed, the

set byte count could be inserted in the frame header as it

was output. Any frame space not utilized by the incoming

data could be padded with blanks, zeros are some other

predetermined character. The use of a set frame length,

especially the maximum frame length allowable, would entail

wasting a lot of frame space with shorter messages. The

question remains if the wasted frame space is worth the

completeness of design by allowing any input or output

protocol framing technique.

Another problem is in the number and meaning of the

control codes of the different protocols. To establish

control code translation tables, a distinct relation must

be established between the each control code of the two

protocols involved. Some control codes have multiple

meanings in a different protocol. For example, Receive

Ready in a bit oriented protocol can be translated to Start

Acknowledge or Positive Acknowledge in a byte count

protocol. Bit oriented protocols respond with Receive

Ready when they receive an initialization message and when

the last frame was received without errors. The byte count

protocols expect a Start Acknowledge control code in

104

www.manaraa.com

response to any initialization message and a Positive

Acknowledge control code in response to a correctly

received frame.

A method must be devised to aid the protocol convertor

in determining the intended meaning of the control code.

The basis for one solution could be narrowing down the

possible responses to each control code to be detected by

the protocol convertor. For example, in the byte count

protocol conversion unit, once the Start Message control

code is sent, a Start Acknowledgment control code is

expected in response. A bit oriented protocol sends the

same Receive Ready control code in response to both a Start

Message control code and an error free frame. The byte

count protocol conversion unit that initiated the Start

Message knows what to expect as a response. The conversion

unit should interpret the Receive Ready control code as a

Start Acknowledgment control code, which makes sense,

instead of Positive Acknowledgment, which does not.

There is still much work to be done in developing an

optimum protocol convertor circuit. The myriad of problems

presented by the lack of corresponding functions between

the different protocols presents a challenge that will

exist for a long time. Until a single standard can be

developed, clearly delineated, and accepted, there will be

a need for protocol conversion.

105

www.manaraa.com

LIST OF REFERENCES

1. Stallings, W., Computer Communications: Architectures.
Protocols, and Standards . IEEE Computer Society Press,
1985.

2. Tanenbaum, A. S., Computer Networks . Prentice-Hall,
Inc., 1981.

3. McNamara, J. E., Technical Aspects of Data
Communicat ion . Digital Press, 1982.

4. Tanenbaum, A. S., "Network Protocols", Coroput inq
Surveys . Vol. 13, No. 4, Dec. 1981.

5. Karten, H. A., "Surviving the Stampede", Systems User ,

pp. 7-10, June 1984.

6. Joint Chiefs of Staff Publication 1, Dictionary of
United States Military Terms for Joint Usage .

1 June 1979.

7. Gabel, D., "Communication Software: Quicker
Data-Transfer Speeds and Complex Error-Checking
Protocols Make the Choices More Difficult," PC Week .

September 24, pp. 59-61, 1985.

8. Robinson, P., "Protocol Converters: the Answer to
Compatibility Problems," Computer Communications .

Vol. 5, No. 3, June 1982."

9. Paseman, W. G., "Applying Data Flow in the Real World,"
Bvte . pp. 201-214, May 1985.

10. Bracker Jr., W. E., "Surveying the Protocol Conversion
Vendor's Offerings," Data Communications . Vol.12, No. 8,
pp. 89-101, August 1983.

11. Siewiorek, D. P., Bell, C. G. and Newell, A., Computer
Structures: Principles and Examples . McGraw-Hill,
1982.

12. Senior, J. M., Optical Fiber Communications.
Prentice/Hall, 1985.

106

www.manaraa.com

13. Johsi, S. and Iyer, V., "Protocols and Chips: Can There

be a Synergism," Electro '83 Conference Record.
Sec. 10/2, pp. 1-8, 1983

14. Hwang, K., Supercomputers: Design and Applications.
IEEE Computer Society, August 1984.

15. Hwang, K. and Briggs, F. A., Computer Architecture and
Parallel Processing . McGraw-Hill, 1984.

16. Short, K. L., Microprocessors and Programmed Logic .

Prentice-Hall, 1981.

17. Sarnak, N. and Jaffe, E., "8087 Performance
Considerations," PC Tech Journal . pp. 30-47,
Sept/Oct 1983.

18. Gajski, D. D. and others, "A Second Opinion on Data
Flow Machines and Languages," Computer . pp. 58-70, Feb.
1982.

19. Stone, H. S., Microcomputer Interfacing.
Addison-Wesley, 1983.

20. Mead, C. and Conway, L., Introduction to VLSI Design .

Addison-Wesley, 1980.

21. Newkirk, J. and Mathews, R., The VLSI Designer's
Library . Addison-Wesley, 1983.

107

www.manaraa.com

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5100

3. Prof. M. L. Cotton 2

Code 62Cc
Naval Postgraduate School
Monterey, California 93943

4. Department of the Navy 3

Headquarters, U. S. Marine Corps (LMC-1)
Attn: Capt . B. Garris
Washington, D.C. 20380-0001

5. Department of Electrical & Computer Engineering 1

Code 6 2

Naval Postgraduate School
Monterey, California 93943

108

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

Thesis
G216
c.l

216457

Garris

Analysis and design
of a parameterized
protocol convertor.

7 DEC 9Q i 7 4 65

' ^m
Thesis
G216
c.l

216457
Garris

Analysis and design

of a parameterized
protocol convertor.

www.manaraa.com

thesG216

Analysis and design of a P«mi£m»dP

3 2768 000 65146 7

DUDLEY KNOX LIBRARY

